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ON THE DETERMINANT OF A DUAL PERIODIC

SINGULAR FIBER

Cheng Gong, Jun Lu, and Sheng-Li Tan

Abstract. Let F be a periodic singular fiber of genus g with dual fiber

F ∗, and let T (resp. T ∗) be the set of the components of F (resp. F ∗)
by removing one component with multiplicity one. We give a formula

to compute the determinant | detT | of the intersect form of T . As a

consequence, we prove that | detT | = | detT ∗ |. As an application, we
compute the Mordell-Weil group of a fibration f : S → P1 of genus 2 with

two singular fibers.

1. Introduction

A family of curves of genus g over a smooth curve C is a holomorphic map
f : S → C whose general fibers F are smooth curves of genus g, where S is a
smooth projective surface. We also call f a fibration of genus g. We always
assume that f has a section O and is relatively minimal, i.e., there is no (−1)-
curve in any fiber. In this paper, we work over an algebraically closed field of
characteristic 0.

For each singular fiber F of f , we define T to be a negative-definite sublattice
spanned by the irreducible components of F , say xi’s, disjoint with the section
O. The determinant of T is denoted to be detT = det(⟨xi, xj⟩), where xi’s are
the irreducible components of F disjoint O. Then the Mordell-Weil group of f
is isomorphic to the quotient group of the Néron-Severi group by the subgroup
generated by O and all of the components in the fibers (see [13,14]).

In order to get the structure of the Mordell-Weil group, a necessary step is to
compute detT for any singular fiber F . Shioda [13] computed detT directly for
all elliptic singular fibers F based on the classification of Kodaira [9]. Oguiso-
Shioda ([12]) use detT to classify of the Mordell-Weil groups of the rational
elliptic surfaces. Some authors are trying to generalize this computation to the
higher genus case. In [7, 8, 16], the authors computed the Mordell-Weil groups
of some hyperelliptic fibrations by detT . In [3], the authors even used detT to
compute the Mordell-Weil groups of some non hyperelliptic fibrations. In [6],
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the authors discussed the arithmetic properties of the Mordell-Weil groups of
some examples in [7, 8, 16].

From [13], one can find the following interesting fact on an elliptic singular
fiber F ,

(1) |detT | = |detT ∗ | ,

where F is of type II, III, IV, and the dual fiber F ∗ is of type II∗, III∗, IV∗ with
the lattice T ∗, respectively. Some authors are trying to generalize the notion
F ∗ for fibers F of higher genus, and to verify the equality (1) for some fibers.

The second and the third authors introduced in [10] the so-called dual fiber
F ∗ for any singular fiber F of arbitrary genus (see Section 2), which coincides
with the notion in the case for elliptic fibration. For a relatively minimal
fibration f : S → P1 with two singular fibers F1 and F2, one can find that that
F1 = F ∗

2 and F2 = F ∗
1 ([4]). In this case, S. Kitagawa conjectures that the

equality (1) holds for Fi’s and for any section O of f .
For a periodic fiber F , the dual fiber F ∗ is also periodic. In this case, the

minimal normal-crossing model F (resp. F
∗
) of F (resp. F ∗) can be written as

follows:

F = nC0 +

b∑
i=1

Γi (resp. F
∗
= nC∗

0 +

b∑
i=1

Γ∗
i ),(2)

where Γi’s (resp. Γ∗
i ) are disjoint H-J branches with valencies (n/λi, λi, σi)

(resp. (n∗/λi, λi, σi)) and C0 (resp. C∗
0 ) is a principal component meeting

transversely each H-J branch at one point, respectively. Furthermore, one
has λ∗

1 = λ1, . . . , λ
∗
b = λb (see [4] and [1, Sec. 3.3]). The above terminologies

can be found in Section 2 or [1, Sec. 3.3].
Let T (resp. T ∗) be the lattice generated by the irreducible components of

F (resp. F ∗) except one component with multiplicity 1. Then we have the
following main result.

Theorem 1.1. Let T follow the above definition. Then

|detT | = |detT ∗ | =
∏b

j=1 λj

n2
.

In particular, |detT | is independent of the choice of the removed component
with multiplicity one.

From Theorem 1.1, we obtain again (1) in the elliptic case found by [13].

Corollary 1.1. For a periodic elliptic fiber F , one has

F , F ∗ II, II∗ III, III∗ IV, IV∗ I∗0, I
∗
0

|detT | 1 2 3 4

As an application, we will compute the Mordell-Weil group of fibrations of
genus 2 with two singular fibers.
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Theorem 1.2. Let f : S → P1 be a relatively minimal fibration of genus
g = 2 with two singular fibers. Assume that S is a rational surface. Then the
Mordell-Weil group of f is as follows:

No. Fibers’ types in [NU] Mordell-Weil group | detT |
1 I∗0−0−0, I

∗
0−0−0 Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 16

3 III, III Z3 ⊕ Z3 9

5 V,V∗ Z3 3

6 VI,VI Z2 ⊕ Z2 4

7 VII,VII∗ Z2 2

8 VIII− 1,VIII− 4 0 1

9 VIII− 2,VIII− 3 0 1

10 IX− 1, IX− 4 Z5 5

11 IX− 2, IX− 3 Z5 5
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2. Preliminaries

Let f : S → C be a relatively minimal fibration of genus g ≥ 1. Each
singular fiber F of f gives a minimal normal-crossing model F by a partial
resolution ([10, Definitions 2.1 and 2.2]), i.e., F is a normal-crossing curve in
which there is no (−1)-curve meeting the other components at most two points.

The n-th root model of F is a relatively minimal model of the pulling-back
fiber of F by a base change of degree n totally ramified over p = f(F ) ([10,
Definition 2.3]). Let MF be the least common multiplicity of the coefficients
of the irreducible components of F . The dual (resp. semistable) model of F is
the (MF − 1)-th (resp. MF -th) model of F ([10, Definitions 2.4 and 2.5]). We
say F is a periodic fiber if the semistable model of F is a smooth curve.

An irreducible component of F is said to be a principal component if it
is either a smooth non-rational curve or a non-singular rational curve which
intersects the other components transversally in 3 or more points. A H-J branch
Γ of F is a chain of smooth rational curves such that terminal curve intersects
a principal component transversally in one point ([10, Definition 3.4]).

Let Γ = γ1C1 + · · ·+ γrCr be one of the H-J branches, where C1 intersects
a principal component C0 with multiplicity n and Ck is a rational curve with
multiplicity γk and C2

k = −ek (k = 1, . . . , r). We call Cr the end component of

F in Γ.
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s c c c c
n

γ1 γ2 γr−1 γr
Γc c

. . .

...p p p p p
. . .p p p p p

p p p p p
−e1 −e2 −er−1−er

Lemma 2.1. Take γ0 :=n, γr+1 :=0, λ :=n/gcd(n, γr) and σ :=γ1/gcd(γ1, γr).
For k = 1, . . . , r, we have

(1) γk+1 − ekγk + γk−1 = 0;
(2) n > γ1 > γ2 > · · · > γr > 0;
(3) γr = gcd(γk, γk−1);

(4) γk−1

γk
= [ek, . . . , er] := ek −

1

ek+1 −
1

. . . −
1

er

.

In particular, Γ is determined by (n/λ, λ, σ).

Proof. (1) is from Zariski’s Lemma. (2)-(4) are the corollaries of (1) (see also
[2, Ch. III, Sec. 5]). □

Definition 2.1. We call (n/λ, λ, σ) the valency of Γ ([1, Sec. 3.3]).

The intersection matrix of the irreducible components in Γ is

M(Γ) := (CiCj)1≤i,j≤r =


−e1 1
1 −e2 1

. . .
. . .

. . .

1 −er−1 1
1 −er

 .

From a straightforward computation and Lemma 2.1, we have

|detM(Γ)| = λ.(3)

3. Proof of Theorem 1.1

In what follows, we assume that f : S → C has a section O. Let σ : (S, F ) →
(S, F ) be a minimal partial resolution of (S, F ) for a periodic fiber F (namely,
F is the minimal normal-crossing model of F ) and f̄ := fσ : S → C with
a section O = σ∗O. Let D be the irreducible component of F intersecting
the section O and D be the strict transform of D under σ. Let T (resp. T )
be a negative-definite sublattice spanned by the irreducible components of F
(resp. F ) except D (resp. D).

We write

F = n1C1 + · · ·+ ndCd
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and

F red = C1 + · · ·+ Cd,

where Ci runs over all irreducible components of F . We denote by Mi the
intersection matrix of F red − Ci.

We need the following key lemma.

Lemma 3.1. For any i and j, we have

n2
i

n2
j

=
detMi

detMj
.

Proof. Without loss of generality, we assume that i = 1 and j = 2. We have
C1

C3

...
Cd

 = P


C2

C3

...
Cd

 ,

where

P =


−n2

n1
−n3

n1
· · · · · · −nd

n1

1 · · · · · · 0
1 · · · 0

. . .
...
1

 .

So M2 = PM1P
T . Thus we get

detM2 = (detP )2 detM1 =

(
−n2

n1

)2

detM1.

The proof is completed. □

Consider the expression (2) of the H-J branch F . Let Γk1 be the end com-
ponent of Γk (k = 1, . . . , b) and Mk be the intersection matrix of F red − Γk1.

Corollary 3.1. Under the above assumptions and notations, we have

|detMk| =
∏b

i=1 λi

λ2
k

for k = 1, 2, . . . , b.

In particular, if the section O intersecting Γk1 for some k, then λk = n and
hence

|detMk| =
∏b

i=1 λi

n2
=

λ1 · · ·λk−1 · λk+1 · · ·λb

n
.

Proof. Let M0 be the intersection matrix of F red −C0. Since all H-J branches
Γi are disjoint,

detM0 = detM(Γ1) · · · detM(Γb),
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where M(Γi) is the intersection matrix of the irreducible components in Γi

(i = 1, . . . , b). By (3), we have

detM0 =

b∏
i=1

λi.

Note that the multiplicity of Γk1 (resp. C0) in F is n
λk

(resp. n). From
Lemma 3.1, we get

detMk

detM0

=

(
n
λk

)2

n2
.

Thus |detMk| =
∏b

i=1 λi

λ2
k

. □

Let F ∗ be the dual fiber of F with a minimal normal-crossing model F
∗
as

in (2). One has λ∗
1 = λ1, . . . , λ

∗
b = λb and n∗ = n (see [4] and [1, Sec. 3.3]).

From Corollary 3.1, we have:

Corollary 3.2. Let T
∗
be the lattice generated by the components of F

∗
except

one component with multiplicity one. Then

|detT | = |detT ∗ | =
∏b

i=1 λi

n2
.

In order to complete our proof of Theorem 1.1, it’s enough to claim that

|detT | = |detT | (similarly, |detT ∗| = |detT ∗|). For convenience, we can
assume that the section O intersects Γb1, i.e., D = Γb1. By Corollary 3.1, one
has

|detT | = λ1 · · ·λb−1/n.(4)

We need to prove:

Lemma 3.2. |detT | = |detT |.

Proof. Consider minimal partial resolution of (S, F ) as follows:

(S, F )
σk+1 //

f̄

��

(Sk, Fk)
σk //

fk

��

· · · // (S1, F1)
σ1 //

f1

��

(S, F )

f

��
C C · · · C C

where Fi is pulling-back fiber of F in the fibration fi := σ1 · · ·σif : Sk → C
and σ = σk+1 · · ·σ1. Let Ti be a negative-definite sublattice spanned by the
irreducible components of Fi except the strict transform of D in Si.

It’s enough to show that detTi = detTi−1 for i = 1, . . . , k + 1 (T0 := T ,
Tk+1 := T ). Without loss of generality, we consider only the case for i = 1.
Let D0 be the exceptional curve of σ1, {Di}li=1’s be the basis of T and D′

i :
σ∗
1Di −miD0 be the strict transform of Di. Thus D′

0, . . . , D
′
l are the basis of

T1.
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Let M = (⟨Di, Dj⟩)1≤i,j≤l and M
′
= (⟨D′

i, D
′
j⟩)0≤i,j≤l be the intersection

matrices of T , T1. Take

V =


1 −m1 −m2 · · · −ml

1
1

. . .

1

 .

Thus one gets detV = 1 and(
−1

M

)
= V TM ′V.

It implies that |detT | = |detT1|. □

Proof of Theorem 1.1. It’s from Lemma 3.2 and (4). □

4. Application

As in [15], we denote by MW(f) the Mordell-Weil group of f : S → P1 with
s singular fibers F1, . . . , Fs. Let Ti to be a negative-definite sublattice spanned
by the irreducible components of Fi which do not intersect the section O.

MW(f) ∼= NS(S)/⟨⊕Ti, O, F ⟩.

It’s well-known that the Mordell-Weil group is a finitely generated abelian
group. From [15, Theorem 3], one has

rankMW(f) = ρ(S)− 2−
s∑

i=1

(ℓ(Fi)− 1) ,

where ρ(S) = rankNS(S) is the Picard number of S, and ℓ(Fi) is the number
of components of Fi.

What can we say about a fibration f : S → C with rankMW(f) = 0? It’s a
very interesting problem. It’s obvious that such a group is finite. By using the
results in [11], one can see that rankMW(f) = 0 if f : S → P1 has 2 singular
fibers, or 3 singular fibers with 2 semistable ones ([4, 5]).

Theorem 4.1 ([12], [16]). Let n be the order of torsion subgroup MWtor. If
|det NS(S)| = 1, then

(1) n2 divides
∏

i detTi.

(2) If the rank of MW(f) is 0, then the order |MW(f)| =
√∏

i detTi.
(3) The natural map MWtor → ⊕i(T

∨
i /Ti) is injective.

Remark 4.1. The dual lattice L∨ of a lattice L is defined as

L∨ := {x ∈ L⊗Q : (x, y) ∈ Z, ∀y ∈ L}

(see [13, Sec. 6]).
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Proof of Theorem 1.2. In [4], we have classified all fibrations f : S → P1 of
genus 2 with two singular fibers which are dual to each other. There are
exactly 9 types of such fibrations containing at least one section. In this case,
S is a rational surface. We have the following computation.

By Theorem 4.1 and Theorem 1.1, we have

|MW(f)| = |detT1 | = |detT2 |

and the following computation.

F I∗0−0−0 III V VI VII VIII− 1 VIII− 2 IX− 1 IX− 2

F ∗ I∗0−0−0 III V∗ VI VII∗ VIII− 4 VIII− 3 IX− 4 IX− 3

| detT | 16 9 3 4 2 1 1 5 5

If |MW (f)| is a prime, then MW (f) is a cyclic group. In what follows, we
consider the cases where the orders are not a prime.
Type (I∗0−0−0, I

∗
0−0−0). In this case, F1 is a normal-crossing divisor. The prin-

cipal component is a (−3)-curve with multiplicity 2, there are 6 H-J branches
and each branch consists of only one (−2)-curve with multiplicity 1. By re-
moving one (−2)-curve, we get T1. So the intersection matrix of T1 is −M ,
where

M =


3 −1 −1 −1 −1 −1
−1 2 0 0 0 0
−1 0 2 0 0 0
−1 0 0 2 0 0
−1 0 0 0 2 0
−1 0 0 0 0 2


|detT1 | = |detT2 | = detM = 16. One can compute easily that

M−1 =


2 1 1 1 1 1
1 1 1/2 1/2 1/2 1/2
1 1/2 1 1/2 1/2 1/2
1 1/2 1/2 1 1/2 1/2
1 1/2 1/2 1/2 1 1/2
1 1/2 1/2 1/2 1/2 1


2M−1 is an integral matrix. The basis of T∨

i is a linear combination of the
basis of Ti, and M−1 is the presentation matrix. Thus 2T∨

i ⊂ Ti. Because
MWtor ↪→ ⊕i(T

∨
i /Ti), the orders of all nonzero elements in Mordell-Weil group

are 2, hence MW(f) ≃ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2.
The calculations of Type (III, III) and Type (VI, VI) are similar. □
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