Acknowledgement
본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421034-04).
References
- Albadwawi M.A., Z.F.R. Ahmed, S.S. Kurup, M.A. Alyafei, and A. Jaleel 2022, A comparative evaluation of aquaponic and soil systems on yield and antioxidant levels in basil, an important food plant in Lamiaceae. Agronomy 12:3007. doi:10.3390/agronomy12123007
- Avgoustaki D.D. 2019, Optimization of photoperiod and quality assessment of basil plants grown in a small-scale indoor cultivation system for reduction of energy demand. Energies 12:3980. doi:10.3390/en12203980
- Azad M.O.K., K.H. Kjaer, M. Adnan, M.T. Naznin, J.D. Lim, I.J. Sung, C.H. Park, and Y.S. Lim 2020, The evaluation of growth performance, photosynthetic capacity, and primary and secondary metabolite content of leaf lettuce grown under limited irradiation of blue and red LED light in an urban plant factory. Agriculture 10:28. doi:10.3390/agriculture10020028
- Chowdhury M., M.A. Gulandaz, S. Islam, M.N. Reza, M. Ali, M.N. Islam, S.U. Park, and S.O. Chung 2023, Lighting conditions affect the growth and glucosinolate contents of Chinese kale leaves grown in an aeroponic plant factory. Hortic Environ Biotechnol 64:97-113. doi:10.1007/s13580-022-00472-0
- Ciriello M., L. Formisano, Y. Rouphael, S. de Pascale, and M. Kacira 2023, Effects of daily light integral and photoperiod with successive harvests on basil yield, morpho-physiological characteristics, and mineral composition in vertical farming. Sci Hortic 322:112396. doi:10.1016/j.scienta.2023.112396
- Copolovici L., A. Lupitu, C. Moisa, M. Taschina, and D.M. Copolovici 2021, The effect of antagonist abiotic stress on bioactive compounds from basil (Ocimum basilicum). Appl Sci 11:9282. doi:10.3390/app11199282
- Cui J., S. Song, J. Yu, and H. Liu 2021, Effect of daily light integral on cucumber plug seedlings in artificial light plant factory. Horticulturae 7:139. doi:10.3390/horticulturae7060139
- De Andrade M.V.S., R.D. de Castro, D. da Silva Cunha, V.G. Neto, M.G.A. Carosio, A.G. Ferreira, L.C. de Souza-Neta L.G. Fernandez, and P.R. Ribeiro 2021, Stevia rebaudiana (Bert.) Bertoni cultivated under different photoperiod conditions: Improving physiological and biochemical traits for industrial applications. Ind Crops Prod 168:113595. doi:10.1016/j.indcrop.2021.113595
- Elkins C., and M.W. van Iersel 2020, Longer photoperiods with the same daily light integral improve growth of rudbeckia seedlings in a greenhouse. HortScience 55:1676-1682. doi:10.21273/HORTSCI15200-20
- Engelsma G. 1978, Phenol synthesis and photomorphogenesis. Philips Tech Rev 38:89-100.
- Engelsma G. 1979, Effect of daylength on phenol metabolism in the leaves of Salvia occidentalis. Plant Physiol 63:765-768. doi:10.1104/pp.63.4.765
- Fu W., P. Li, and Y. Wu 2012, Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci Hortic 135:45-51. doi:10.1016/j.scienta.2011.12.004
- Gao M., R. He, R. Shi, Y. Zhang, S. Song, W. Su, and H. Liu 2021, Differential effects of low light intensity on broccoli microgreens growth and phytochemicals. Agronomy 11:537. doi:10.3390/agronomy11030537
- Hernandez-Adasme C., R. Palma-Dias, and V.H. Escalona 2023, The effect of light intensity and photoperiod on the yield and antioxidant activity of beet microgreens produced in an indoor system. Horticulturae 9:493. doi:10.3390/horticulturae9040493
- Kim J.-K., H.-M. Kang, D.-C. Jang, J.-K. Na, and K.-Y. Choi 2020, Effect of light intensity and temperature on the growth and functional compounds in the baby leaf vegetable plant Peucedanum japonicum Thunb. Korean J Hortic Sci Technol 38:822-829. doi:10.7235/HORT.20200074
- Kim S., S. Noh, and J. Park 2022, Increased antioxidants of Agastache rugosa by the night interruption time. J Bio-Env Con 31:319-324. doi:10.12791/KSBEC.2022.31.4.319
- Li T., H. Liu, and F. Zhou 2023, Effects of light intensity and photoperiod on the fresh locking and quality of hydroponic arugula in the harvesting period. Agronomy 13:1667. doi:10.3390/agronomy13071667
- Lichtenthaler H.K., and C. Buschmann 2001, Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem 1:F4.3.1-F4.3.8. doi:10.1002/0471142913.faf0403s01
- Marwat S.K., F. Rehman, M.S. Khan, S. Ghulam, N. Anwar, G. Mustafa, and K. Usman 2011, Phytochemical constituents and pharmacological activities of sweet basil - Ocimum basilicum L. (Lamiaceae). Asian J Chem 23:3773-3782.
- Palmer S., and M.W. van Iersel 2020, Increasing growth of lettuce and mizuna under sole-source LED lighting using longer photoperiods with the same daily light integral. Agronomy 10:1659. doi:10.3390/agronomy10111659
- Santin M., M. Becagli, M.C. Sciampagna, A. Mannucci, A. Ranieri, and A. Castagna 2023, Integrative effect of UV-B and some organic amendments on growth, phenolic and flavonoid compounds, and antioxidant activity of basil (Ocimum basilicum L.) plants. Horticulturae 9:894. doi:10.3390/horticulturae9080894
- Severo J., A. Tiecher, F.C. Chaves, J.A. Silva, and C.V. Rombaldi 2011, Gene transcript accumulation associated with physiological and chemical changes during developmental stages of strawberry cv. Camarosa. Food Chem 126:995-1000. doi:10.1016/j.foodchem.2010.11.107
- Shahrajabian M.H., W. Sun, and Q. Cheng 2020, Chemical components and pharmacological benefits of basil (Ocimum basilicum): A review. Int J Food Prop 23:1961-1970. doi:10.1080/10942912.2020.1828456
- Sipos L., L. Balazs, G. Szekely, A. Jung, S. Sarosi, P. Radacsi, and L. Csambalik 2021, Optimization of basil (Ocimum basilicum L.) production in LED light environments - a review. Sci Hortic 289:110486. doi:10.1016/j.scienta.2021.110486
- Sutuliene R., K. Lauzike, T. Pukas, and G. Samuoliene 2022, Effect of light intensity on the growth and antioxidant activity of sweet basil and lettuce. Plants 11:1709. doi:10.3390/plants11131709
- Taie H.A.A., Z.A.-E.R. Salama, and S. Radwan 2010, Potential activity of basil plants as a source of antioxidants and anticancer agents as affected by organic and bio-organic fertilization. Not Bot Horti Agrobot Cluj Napoca 38:119-127. doi:10.15835/nbha3813534
- Tso T., M. Kasperbauer, and T. Sorokin 1970, Effect of photoperiod and end-of-day light quality on alkaloids and phenolic compounds of tobacco. Plant Physiol 45:330-333. doi:10.1104/pp.45.3.330
- Vodnik D., Z. Vogrin, H. Sircelj, M.C. Grohar, A. Medic, K. Carovic-Stanko, T. Safner, and B. Lazarevic 2023, Phenotyping of basil (Ocimum basilicum L.) illuminated with UV-A light of different wavelengths and intensities. Sci Hortic 309:111638. doi:10.1016/j.scienta.2022.111638
- Xu W., N. Lu, M. Kikuchi, and M. Takagaki 2021, Continuous lighting and high daily light integral enhance yield and quality of mass-produced nasturtium (Tropaeolum majus L.) in plant factories. Plants 10:1203. doi:10.3390/plants10061203
- Yan Z., D. He, G. Niu, and H. Zhai 2019, Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Sci Hortic 248:138-144. doi:10.1016/j.scienta.2019.01.002
- Yan Z., L. Wang, Y. Wang, Y. Chu, D. Lin, and Y. Yang 2021, Morphological and physiological properties of greenhouse-grown cucumber seedlings as influenced by supplementary light-emitting diodes with same daily light integral. Horticulturae 7:361. doi:10.3390/horticulturae7100361
- Zhang B., H. Zhang, Q. Jing, and J. Wang 2020, Light pollution on the growth, physiology and chlorophyll fluorescence response of landscape plant perennial ryegrass (Lolium perenne L.). Ecol Indic 115:106448. doi:10.1016/j.ecolind.2020.106448