DOI QR코드

DOI QR Code

Influence of Light Intensity and Photoperiod on the Growth and Phenol Contents of Hydroponic Basil in Vertical Farms

수직농장에서 광도와 광주기가 수경재배 바질의 생육 및 페놀 함량에 미치는 영향

  • Sunwoo Kim (Department of Bio-AI Convergence, Chungnam National University) ;
  • Jongseok Park (Department of Horticultural Science, Chungnam National University)
  • 김선우 (충남대학교 바이오 AI 융합학과) ;
  • 박종석 (충남대학교 농업생명과학대학 원예학과)
  • Received : 2023.10.06
  • Accepted : 2023.10.19
  • Published : 2023.10.31

Abstract

This study aimed to investigate the growth and phenol content changes of basil (Ocimum basilicum L.) under five different light intensities and photoperiods, maintaining the same Daily Light Integral (DLI) conditions in a plant factory. Basil seeds were sown on a rockwool medium for four weeks and then transplanted. To maintain a DLI 17mol·m-2·d-1, light intensity and photoperiod were set at 16h-295, 18h-260, 20h-235, 22h-215, and 24h-200μmol·m-2·s-1 and cultivated for four weeks. The harvested results showed that basil plant height, number of lateral branches, and leaf number tended to decrease from the 16h-295 treatment to the 24h-200 treatment. Shoot fresh weight, dry weight, leaf area, leaf width, and leaf length were significantly higher in the 18 h-260 treatment. The total phenolic contents in the 18h-260 treatment was significantly higher by 51.3%, 172.7%, 111%, and 119.7% compared to the 16h-295, 20h-235, 22h-215, and 24h-200 treatments, respectively. Therefore, it is anticipated that cultivating basil under the condition of 18h-260 treatment could yield enhanced growth quality and an increase in total phenolic contents.

본 연구는 식물 공장에서 바질(Ocimum basilicum L.)을 동일한 일적산광량(DLI) 조건에서 5개의 광도와 광주기의 처리구를 설정하여 생육과 페놀 함량의 변화를 살펴보고자 수행되었다. 바질 종자를 4주간 암면 배지에 파종한 후 육묘하였다. 육묘 후 DLI 17mol·m-2·d-1로 유지하기 위해 광주기와 광도를 16h-295, 18h-260, 20h-235, 22h-215, 24h-200μmol·m-2·s-1 처리로 설정한 후 4주간 재배하였다. 수확 후 결과 바질의 초장, 측지 개수, 엽수는 16h-295 처리에서 24h-200 처리로 갈수록 낮아지는 경향을 보였다. 지상부 생체중과 건물중, 엽면적, 엽폭, 엽장은 18h-260 처리가 유의적으로 높았으며, 총 페놀 함량은 18h-260 처리가 16h-295, 20h-235, 22h-215, 24h-200 처리에 비해 각각 51.32, 172.71, 110.95, 119.71%로 유의하게 높았다. 따라서 인공광을 광주기가 짧고 높은 광도 조건인 18h-260 처리에서 바질을 재배하면 생육 품질과 총 페놀 함량 증대 효과를 기대할 수 있을 것이라고 사료된다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421034-04).

References

  1. Albadwawi M.A., Z.F.R. Ahmed, S.S. Kurup, M.A. Alyafei, and A. Jaleel 2022, A comparative evaluation of aquaponic and soil systems on yield and antioxidant levels in basil, an important food plant in Lamiaceae. Agronomy 12:3007. doi:10.3390/agronomy12123007
  2. Avgoustaki D.D. 2019, Optimization of photoperiod and quality assessment of basil plants grown in a small-scale indoor cultivation system for reduction of energy demand. Energies 12:3980. doi:10.3390/en12203980
  3. Azad M.O.K., K.H. Kjaer, M. Adnan, M.T. Naznin, J.D. Lim, I.J. Sung, C.H. Park, and Y.S. Lim 2020, The evaluation of growth performance, photosynthetic capacity, and primary and secondary metabolite content of leaf lettuce grown under limited irradiation of blue and red LED light in an urban plant factory. Agriculture 10:28. doi:10.3390/agriculture10020028
  4. Chowdhury M., M.A. Gulandaz, S. Islam, M.N. Reza, M. Ali, M.N. Islam, S.U. Park, and S.O. Chung 2023, Lighting conditions affect the growth and glucosinolate contents of Chinese kale leaves grown in an aeroponic plant factory. Hortic Environ Biotechnol 64:97-113. doi:10.1007/s13580-022-00472-0
  5. Ciriello M., L. Formisano, Y. Rouphael, S. de Pascale, and M. Kacira 2023, Effects of daily light integral and photoperiod with successive harvests on basil yield, morpho-physiological characteristics, and mineral composition in vertical farming. Sci Hortic 322:112396. doi:10.1016/j.scienta.2023.112396
  6. Copolovici L., A. Lupitu, C. Moisa, M. Taschina, and D.M. Copolovici 2021, The effect of antagonist abiotic stress on bioactive compounds from basil (Ocimum basilicum). Appl Sci 11:9282. doi:10.3390/app11199282
  7. Cui J., S. Song, J. Yu, and H. Liu 2021, Effect of daily light integral on cucumber plug seedlings in artificial light plant factory. Horticulturae 7:139. doi:10.3390/horticulturae7060139
  8. De Andrade M.V.S., R.D. de Castro, D. da Silva Cunha, V.G. Neto, M.G.A. Carosio, A.G. Ferreira, L.C. de Souza-Neta L.G. Fernandez, and P.R. Ribeiro 2021, Stevia rebaudiana (Bert.) Bertoni cultivated under different photoperiod conditions: Improving physiological and biochemical traits for industrial applications. Ind Crops Prod 168:113595. doi:10.1016/j.indcrop.2021.113595
  9. Elkins C., and M.W. van Iersel 2020, Longer photoperiods with the same daily light integral improve growth of rudbeckia seedlings in a greenhouse. HortScience 55:1676-1682. doi:10.21273/HORTSCI15200-20
  10. Engelsma G. 1978, Phenol synthesis and photomorphogenesis. Philips Tech Rev 38:89-100.
  11. Engelsma G. 1979, Effect of daylength on phenol metabolism in the leaves of Salvia occidentalis. Plant Physiol 63:765-768. doi:10.1104/pp.63.4.765
  12. Fu W., P. Li, and Y. Wu 2012, Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci Hortic 135:45-51. doi:10.1016/j.scienta.2011.12.004
  13. Gao M., R. He, R. Shi, Y. Zhang, S. Song, W. Su, and H. Liu 2021, Differential effects of low light intensity on broccoli microgreens growth and phytochemicals. Agronomy 11:537. doi:10.3390/agronomy11030537
  14. Hernandez-Adasme C., R. Palma-Dias, and V.H. Escalona 2023, The effect of light intensity and photoperiod on the yield and antioxidant activity of beet microgreens produced in an indoor system. Horticulturae 9:493. doi:10.3390/horticulturae9040493
  15. Kim J.-K., H.-M. Kang, D.-C. Jang, J.-K. Na, and K.-Y. Choi 2020, Effect of light intensity and temperature on the growth and functional compounds in the baby leaf vegetable plant Peucedanum japonicum Thunb. Korean J Hortic Sci Technol 38:822-829. doi:10.7235/HORT.20200074
  16. Kim S., S. Noh, and J. Park 2022, Increased antioxidants of Agastache rugosa by the night interruption time. J Bio-Env Con 31:319-324. doi:10.12791/KSBEC.2022.31.4.319
  17. Li T., H. Liu, and F. Zhou 2023, Effects of light intensity and photoperiod on the fresh locking and quality of hydroponic arugula in the harvesting period. Agronomy 13:1667. doi:10.3390/agronomy13071667
  18. Lichtenthaler H.K., and C. Buschmann 2001, Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem 1:F4.3.1-F4.3.8. doi:10.1002/0471142913.faf0403s01
  19. Marwat S.K., F. Rehman, M.S. Khan, S. Ghulam, N. Anwar, G. Mustafa, and K. Usman 2011, Phytochemical constituents and pharmacological activities of sweet basil - Ocimum basilicum L. (Lamiaceae). Asian J Chem 23:3773-3782.
  20. Palmer S., and M.W. van Iersel 2020, Increasing growth of lettuce and mizuna under sole-source LED lighting using longer photoperiods with the same daily light integral. Agronomy 10:1659. doi:10.3390/agronomy10111659
  21. Santin M., M. Becagli, M.C. Sciampagna, A. Mannucci, A. Ranieri, and A. Castagna 2023, Integrative effect of UV-B and some organic amendments on growth, phenolic and flavonoid compounds, and antioxidant activity of basil (Ocimum basilicum L.) plants. Horticulturae 9:894. doi:10.3390/horticulturae9080894
  22. Severo J., A. Tiecher, F.C. Chaves, J.A. Silva, and C.V. Rombaldi 2011, Gene transcript accumulation associated with physiological and chemical changes during developmental stages of strawberry cv. Camarosa. Food Chem 126:995-1000. doi:10.1016/j.foodchem.2010.11.107
  23. Shahrajabian M.H., W. Sun, and Q. Cheng 2020, Chemical components and pharmacological benefits of basil (Ocimum basilicum): A review. Int J Food Prop 23:1961-1970. doi:10.1080/10942912.2020.1828456
  24. Sipos L., L. Balazs, G. Szekely, A. Jung, S. Sarosi, P. Radacsi, and L. Csambalik 2021, Optimization of basil (Ocimum basilicum L.) production in LED light environments - a review. Sci Hortic 289:110486. doi:10.1016/j.scienta.2021.110486
  25. Sutuliene R., K. Lauzike, T. Pukas, and G. Samuoliene 2022, Effect of light intensity on the growth and antioxidant activity of sweet basil and lettuce. Plants 11:1709. doi:10.3390/plants11131709
  26. Taie H.A.A., Z.A.-E.R. Salama, and S. Radwan 2010, Potential activity of basil plants as a source of antioxidants and anticancer agents as affected by organic and bio-organic fertilization. Not Bot Horti Agrobot Cluj Napoca 38:119-127. doi:10.15835/nbha3813534
  27. Tso T., M. Kasperbauer, and T. Sorokin 1970, Effect of photoperiod and end-of-day light quality on alkaloids and phenolic compounds of tobacco. Plant Physiol 45:330-333. doi:10.1104/pp.45.3.330
  28. Vodnik D., Z. Vogrin, H. Sircelj, M.C. Grohar, A. Medic, K. Carovic-Stanko, T. Safner, and B. Lazarevic 2023, Phenotyping of basil (Ocimum basilicum L.) illuminated with UV-A light of different wavelengths and intensities. Sci Hortic 309:111638. doi:10.1016/j.scienta.2022.111638
  29. Xu W., N. Lu, M. Kikuchi, and M. Takagaki 2021, Continuous lighting and high daily light integral enhance yield and quality of mass-produced nasturtium (Tropaeolum majus L.) in plant factories. Plants 10:1203. doi:10.3390/plants10061203
  30. Yan Z., D. He, G. Niu, and H. Zhai 2019, Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Sci Hortic 248:138-144. doi:10.1016/j.scienta.2019.01.002
  31. Yan Z., L. Wang, Y. Wang, Y. Chu, D. Lin, and Y. Yang 2021, Morphological and physiological properties of greenhouse-grown cucumber seedlings as influenced by supplementary light-emitting diodes with same daily light integral. Horticulturae 7:361. doi:10.3390/horticulturae7100361
  32. Zhang B., H. Zhang, Q. Jing, and J. Wang 2020, Light pollution on the growth, physiology and chlorophyll fluorescence response of landscape plant perennial ryegrass (Lolium perenne L.). Ecol Indic 115:106448. doi:10.1016/j.ecolind.2020.106448