Acknowledgement
Research is partially supported by NSFC Grant No. 11971168, Shanghai Science and Technology Innovation Program Basic Research Project STCSM 20JC1412900, and Science and Technology Commission of Shanghai Municipality (STCSM) No. 22DZ2229014.
References
- D. Bakry and M. Emery, Diffusions hypercontractives, in Seminaire de probabilites, XIX, 1983/84, 177-206, Lecture Notes in Math., 1123, Springer, Berlin, 1985. https://doi.org/10.1007/BFb0075847
- D. Bakry and Z. M. Qian, Harnack inequalities on a manifold with positive or negative Ricci curvature, Rev. Mat. Iberoam. 15 (1999), no. 1, 143-179. https://doi.org/10.4171/RMI/253
- R. H. Bamler, Convergence of Ricci flows with bounded scalar curvature, Ann. of Math. (2) 188 (2018), no. 3, 753-831. https://doi.org/10.4007/annals.2018.188.3.2
- N. Charalambous, Z. Lu, and J. M. Rowlett, Eigenvalue estimates on Bakry-Emery manifolds, in Elliptic and parabolic equations, 45-61, Springer Proc. Math. Stat., 119, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-12547-3_2
- X. Chen and B. Wang, Space of Ricci flows (II)-Part B: Weak compactness of the flows, J. Differential Geom. 116 (2020), no. 1, 1-123. https://doi.org/10.4310/jdg/1599271253
- B. Chow, P. Lu, and L. Ni, Hamilton's Ricci Flow, Graduate Studies in Mathematics, 77, Amer. Math. Soc., Providence, RI, 2006. https://doi.org/10.1090/gsm/077
- X. Z. Dai and G. F. Wei, Comparison geometry for Ricci curvature, https://web.math.ucsb.edu/-dai/Ricci-book.pdf
- N. Garofalo and A. Mondino, Li-Yau and Harnack type inequalities in RCD*(K, N) metric measure spaces, Nonlinear Anal. 95 (2014), 721-734. https://doi.org/10.1016/j.na.2013.10.002
- R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113-126. https://doi.org/10.4310/CAG.1993.v1.n1.a6
- Y. Li, Li-Yau-Hamilton estimates and Bakry-Emery-Ricci curvature, Nonlinear Anal. 113 (2015), 1-32. https://doi.org/10.1016/j.na.2014.09.014
- J. Li and X. Xu, Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math. 226 (2011), no. 5, 4456-4491. https://doi.org/10.1016/j.aim.2010.12.009
- P. Li and S.-T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156 (1986), no. 3-4, 153-201. https://doi.org/10.1007/BF02399203
- J. Lott, Some geometric properties of the Bakry-Emery-Ricci tensor, Comment. Math. Helv. 78 (2003), no. 4, 865-883. https://doi.org/10.1007/s00014-003-0775-8
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159.
- B. Qian, Remarks on differential Harnack inequalities, J. Math. Anal. Appl. 409 (2014), no. 1, 556-566. https://doi.org/10.1016/j.jmaa.2013.07.043
- Z. M. Qian, H.-C. Zhang, and X.-P. Zhu, Sharp spectral gap and Li-Yau's estimate on Alexandrov spaces, Math. Z. 273 (2013), no. 3-4, 1175-1195. https://doi.org/10.1007/s00209-012-1049-1
- G. Tian and Z. Zhang, Regularity of Kahler-Ricci flows on Fano manifolds, Acta Math. 216 (2016), no. 1, 127-176. https://doi.org/10.1007/s11511-016-0137-1
- F. Y. Wang, Gradient and Harnack inequalities on noncompact manifolds with boundary, Pacific J. Math. 245 (2010), no. 1, 185-200. https://doi.org/10.2140/pjm.2010.245.185
- G. Wei and W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377-405. https://doi.org/10.4310/jdg/1261495336
- J. Y. Wu and P. Wu, Heat kernel on smooth metric measure spaces and applications, Math. Ann. 365 (2016), no. 1-2, 309-344. https://doi.org/10.1007/s00208-015-1289-6
- S.-T. Yau, Harnack inequality for non-self-adjoint evolution equations, Math. Res. Lett. 2 (1995), no. 4, 387-399. https://doi.org/10.4310/MRL.1995.v2.n4.a2
- C. Yu and F. Zhao, Sharp Li-Yau-type gradient estimates on hyperbolic spaces, J. Geom. Anal. 30 (2020), no. 1, 54-68. https://doi.org/10.1007/s12220-018-00133-8
- C. Yu and F. Zhao, Recurrence relations for heat kernels on spheres, J. Math. Anal. Appl. 507 (2022), no. 2, Paper No. 125790, 14 pp. https://doi.org/10.1016/j.jmaa.2021.125790
- C. Yu and F. Zhao, Li-Yau multiplier set and optimal Li-Yau gradient estimate on hyperbolic spaces, Potential Anal. 56 (2022), no. 2, 191-211. https://doi.org/10.1007/s11118-020-09881-1
- Q. S. Zhang, A Sharp Li-Yau gradient bound on Compact Manifolds, arXiv:2110.08933.
- H.-C. Zhang and X.-P. Zhu, Local Li-Yau's estimates on RCD∗(K, N) metric measure spaces, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 93, 30 pp. https://doi.org/10.1007/s00526-016-1040-5
- Q. S. Zhang and M. Zhu, Li-Yau gradient bound for collapsing manifolds under integral curvature condition, Proc. Amer. Math. Soc. 145 (2017), no. 7, 3117-3126. https://doi.org/10.1090/proc/13418
- Q. S. Zhang and M. Zhu, Li-Yau gradient bounds on compact manifolds under nearly optimal curvature conditions, J. Funct. Anal. 275 (2018), no. 2, 478-515. https://doi.org/10.1016/j.jfa.2018.02.001