DOI QR코드

DOI QR Code

LI-YAU GRADIENT ESTIMATES ON CLOSED MANIFOLDS UNDER BAKRY-ÉMERY RICCI CURVATURE CONDITIONS

  • XingYu Song (School of Mathematical Sciences and Shanghai Key Laboratory of PMMP East China Normal University) ;
  • Ling Wu (School of Mathematical Sciences and Shanghai Key Laboratory of PMMP East China Normal University)
  • Received : 2022.11.26
  • Accepted : 2023.03.16
  • Published : 2023.09.01

Abstract

In this paper, motivated by the work of Q. S. Zhang in [25], we derive optimal Li-Yau gradient bounds for positive solutions of the f-heat equation on closed manifolds with Bakry-Émery Ricci curvature bounded below.

Keywords

Acknowledgement

Research is partially supported by NSFC Grant No. 11971168, Shanghai Science and Technology Innovation Program Basic Research Project STCSM 20JC1412900, and Science and Technology Commission of Shanghai Municipality (STCSM) No. 22DZ2229014.

References

  1. D. Bakry and M. Emery, Diffusions hypercontractives, in Seminaire de probabilites, XIX, 1983/84, 177-206, Lecture Notes in Math., 1123, Springer, Berlin, 1985. https://doi.org/10.1007/BFb0075847
  2. D. Bakry and Z. M. Qian, Harnack inequalities on a manifold with positive or negative Ricci curvature, Rev. Mat. Iberoam. 15 (1999), no. 1, 143-179. https://doi.org/10.4171/RMI/253
  3. R. H. Bamler, Convergence of Ricci flows with bounded scalar curvature, Ann. of Math. (2) 188 (2018), no. 3, 753-831. https://doi.org/10.4007/annals.2018.188.3.2
  4. N. Charalambous, Z. Lu, and J. M. Rowlett, Eigenvalue estimates on Bakry-Emery manifolds, in Elliptic and parabolic equations, 45-61, Springer Proc. Math. Stat., 119, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-12547-3_2
  5. X. Chen and B. Wang, Space of Ricci flows (II)-Part B: Weak compactness of the flows, J. Differential Geom. 116 (2020), no. 1, 1-123. https://doi.org/10.4310/jdg/1599271253
  6. B. Chow, P. Lu, and L. Ni, Hamilton's Ricci Flow, Graduate Studies in Mathematics, 77, Amer. Math. Soc., Providence, RI, 2006. https://doi.org/10.1090/gsm/077
  7. X. Z. Dai and G. F. Wei, Comparison geometry for Ricci curvature, https://web.math.ucsb.edu/-dai/Ricci-book.pdf
  8. N. Garofalo and A. Mondino, Li-Yau and Harnack type inequalities in RCD*(K, N) metric measure spaces, Nonlinear Anal. 95 (2014), 721-734. https://doi.org/10.1016/j.na.2013.10.002
  9. R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113-126. https://doi.org/10.4310/CAG.1993.v1.n1.a6
  10. Y. Li, Li-Yau-Hamilton estimates and Bakry-Emery-Ricci curvature, Nonlinear Anal. 113 (2015), 1-32. https://doi.org/10.1016/j.na.2014.09.014
  11. J. Li and X. Xu, Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math. 226 (2011), no. 5, 4456-4491. https://doi.org/10.1016/j.aim.2010.12.009
  12. P. Li and S.-T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156 (1986), no. 3-4, 153-201. https://doi.org/10.1007/BF02399203
  13. J. Lott, Some geometric properties of the Bakry-Emery-Ricci tensor, Comment. Math. Helv. 78 (2003), no. 4, 865-883. https://doi.org/10.1007/s00014-003-0775-8
  14. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159.
  15. B. Qian, Remarks on differential Harnack inequalities, J. Math. Anal. Appl. 409 (2014), no. 1, 556-566. https://doi.org/10.1016/j.jmaa.2013.07.043
  16. Z. M. Qian, H.-C. Zhang, and X.-P. Zhu, Sharp spectral gap and Li-Yau's estimate on Alexandrov spaces, Math. Z. 273 (2013), no. 3-4, 1175-1195. https://doi.org/10.1007/s00209-012-1049-1
  17. G. Tian and Z. Zhang, Regularity of Kahler-Ricci flows on Fano manifolds, Acta Math. 216 (2016), no. 1, 127-176. https://doi.org/10.1007/s11511-016-0137-1
  18. F. Y. Wang, Gradient and Harnack inequalities on noncompact manifolds with boundary, Pacific J. Math. 245 (2010), no. 1, 185-200. https://doi.org/10.2140/pjm.2010.245.185
  19. G. Wei and W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377-405. https://doi.org/10.4310/jdg/1261495336
  20. J. Y. Wu and P. Wu, Heat kernel on smooth metric measure spaces and applications, Math. Ann. 365 (2016), no. 1-2, 309-344. https://doi.org/10.1007/s00208-015-1289-6
  21. S.-T. Yau, Harnack inequality for non-self-adjoint evolution equations, Math. Res. Lett. 2 (1995), no. 4, 387-399. https://doi.org/10.4310/MRL.1995.v2.n4.a2
  22. C. Yu and F. Zhao, Sharp Li-Yau-type gradient estimates on hyperbolic spaces, J. Geom. Anal. 30 (2020), no. 1, 54-68. https://doi.org/10.1007/s12220-018-00133-8
  23. C. Yu and F. Zhao, Recurrence relations for heat kernels on spheres, J. Math. Anal. Appl. 507 (2022), no. 2, Paper No. 125790, 14 pp. https://doi.org/10.1016/j.jmaa.2021.125790
  24. C. Yu and F. Zhao, Li-Yau multiplier set and optimal Li-Yau gradient estimate on hyperbolic spaces, Potential Anal. 56 (2022), no. 2, 191-211. https://doi.org/10.1007/s11118-020-09881-1
  25. Q. S. Zhang, A Sharp Li-Yau gradient bound on Compact Manifolds, arXiv:2110.08933.
  26. H.-C. Zhang and X.-P. Zhu, Local Li-Yau's estimates on RCD∗(K, N) metric measure spaces, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 93, 30 pp. https://doi.org/10.1007/s00526-016-1040-5
  27. Q. S. Zhang and M. Zhu, Li-Yau gradient bound for collapsing manifolds under integral curvature condition, Proc. Amer. Math. Soc. 145 (2017), no. 7, 3117-3126. https://doi.org/10.1090/proc/13418
  28. Q. S. Zhang and M. Zhu, Li-Yau gradient bounds on compact manifolds under nearly optimal curvature conditions, J. Funct. Anal. 275 (2018), no. 2, 478-515. https://doi.org/10.1016/j.jfa.2018.02.001