DOI QR코드

DOI QR Code

THE FIRST POSITIVE AND NEGATIVE DIRAC EIGENVALUES ON SASAKIAN MANIFOLDS

  • Eui Chul Kim (Department of Mathematics Education Andong National University)
  • Received : 2022.09.21
  • Accepted : 2023.05.19
  • Published : 2023.09.01

Abstract

Using the results in the paper [12], we give an estimate for the first positive and negative Dirac eigenvalue on a 7-dimensional Sasakian spin manifold. The limiting case of this estimate can be attained if the manifold under consideration admits a Sasakian Killing spinor. By imposing the eta-Einstein condition on Sasakian manifolds of higher dimensions 2m + 1 ≥ 9, we derive some new Dirac eigenvalue inequalities that improve the recent results in [12, 13].

Keywords

References

  1. I. Agricola, The Srn'i lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), suppl., 5-84.
  2. I. Agricola, J. Becker-Bender, and H. Kim, Twistorial eigenvalue estimates for generalized Dirac operators with torsion, Adv. Math. 243 (2013), 296-329. https://doi.org/10.1016/j.aim.2013.05.001
  3. M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69. https://doi.org/10.1017/S0305004100049410
  4. H. Baum, T. Friedrich, R. Grunewald, and I. Kath, Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte zur Mathematik, 124, Teubner, Stuttgart, 1991.
  5. J.-P. Bourguignon, O. Hijazi, J. Milhorat, A. Moroianu, and S. Moroianu, A spinorial approach to Riemannian and conformal geometry, EMS Monographs in Mathematics, Eur. Math. Soc., Zurich, 2015. https://doi.org/10.4171/136
  6. T. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrummung, Math. Nachr. 97 (1980), 117-146. https://doi.org/10.1002/mana.19800970111
  7. T. Friedrich, Dirac operators in Riemannian geometry, translated from the 1997 German original by Andreas Nestke, Graduate Studies in Mathematics, 25, Amer. Math. Soc., Providence, RI, 2000. https://doi.org/10.1090/gsm/025
  8. N. Ginoux, The Dirac spectrum, Lecture Notes in Mathematics, 1976, Springer, Berlin, 2009. https://doi.org/10.1007/978-3-642-01570-0
  9. E. C. Kim, The Ab-genus and symmetry of the Dirac spectrum on Riemannian product manifolds, Differential Geom. Appl. 25 (2007), no. 3, 309-321. https://doi.org/10.1016/j.difgeo.2006.11.009
  10. E. C. Kim, Estimates of small Dirac eigenvalues on 3-dimensional Sasakian manifolds, Differential Geom. Appl. 28 (2010), no. 6, 648-655. https://doi.org/10.1016/j.difgeo.2010.07.001
  11. E. C. Kim, The first positive eigenvalue of the Dirac operator on 3-dimensional Sasakian manifolds, Bull. Korean Math. Soc. 50 (2013), no. 2, 431-440. https://doi.org/10.4134/BKMS.2013.50.2.431
  12. E. C. Kim, Eigenvalue estimates for generalized Dirac operators on Sasakian manifolds, Ann. Global Anal. Geom. 45 (2014), no. 1, 67-93. https://doi.org/10.1007/s10455-013-9388-7
  13. E. C. Kim, Sasakian twistor spinors and the first Dirac eigenvalue, J. Korean Math. Soc. 53 (2016), no. 6, 1347-1370. https://doi.org/10.4134/JKMS.j150524
  14. E. C. Kim and T. Friedrich, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), no. 1-2, 128-172. https://doi.org/10.1016/S0393-0440(99)00043-1
  15. K.-D. Kirchberg, The first eigenvalue of the Dirac operator on Kahler manifolds, J. Geom. Phys. 7 (1990), no. 4, 449-468. https://doi.org/10.1016/0393-0440(90)90001-J
  16. M. Pilca, Kahlerian twistor spinors, Math. Z. 268 (2011), no. 1-2, 223-255. https://doi.org/10.1007/s00209-010-0668-7