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LI-YAU GRADIENT ESTIMATES ON CLOSED MANIFOLDS

UNDER BAKRY-ÉMERY RICCI CURVATURE CONDITIONS

XingYu Song and Ling Wu

Abstract. In this paper, motivated by the work of Q. S. Zhang in [25],
we derive optimal Li-Yau gradient bounds for positive solutions of the

f -heat equation on closed manifolds with Bakry-Émery Ricci curvature
bounded below.

1. Introduction

Let (Mn, g, e−fdv) be a complete smooth metric measure space, where
(Mn, g) is an n-dimensional complete Riemannian manifold, dv is the volume
element of g, f is a smooth function on M (called the potential function), and
e−fdv (for short, dµ) is called the weighted volume element. The m-Bakry-

Émery Ricci curvature ([1], [13]) associated to (Mn, g, e−fdv) is defined by

Ricm,n
f := Ric+Hessf − 1

m− n
df ⊗ df (m > n),

where Ric is the Ricci curvature of (Mn, g), Hess is the Hessian with respect to

the metric g. The m-Bakry-Émery Ricci curvature is a natural generalization
of Ricci curvature on Riemannian manifolds. When m = ∞, we denote

Ricf = Ric∞,n
f = Ric+Hessf,

which is called the Bakry-Émery Ricci curvature ([1]). Manifolds with constant

Bakry-Émery Ricci curvature are so called gradient Ricci solitons, which play
a crucial role in the singularity analysis of the Ricci flow ([3], [5], [14], [17]).
With respect to the weighted volume element the natural self-adjoint Laplacian
operator is the f -Laplacian

∆f = ∆− ⟨∇f,∇⟩ .
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The f -heat equation is defined as

(∆f − ∂t)u = 0.

In [12], P. Li and S.-T. Yau showed that if (Mn, g) is a complete Riemannian
manifold with Ric ≥ −K for some constant K ≥ 0, then for any positive
solution u of the heat equation (∆− ∂t)u = 0, we have

(1)
|∇u|2

u2
− α

∂tu

u
≤ nα2

2t
+

nα2K

2(α− 1)
, ∀α > 1, t > 0.

In particular, when Ric ≥ 0, one obtains the optimal Li-Yau bound

(2)
|∇u|2

u2
− ∂tu

u
≤ n

2t
.

Many applications of (1) and (2) have been demonstrated, including the
parabolic Harnack inequality, optimal Guassian estimates of the heat kernel,
estimates of eigenvalues of the Laplace operator, and estimates of the Green’s
function. Moreover, (1) and (2) can even imply the Laplacian Comparison
Theorem (see e.g. [6] page 394).

The estimate (2) is sharp since the equality is achieved by the heat kernel
of Rn. However, (1) is not sharp for K > 0. An open question asks if we can
find sharp Li-Yau-type gradient estimates for K > 0. Many works were done
to improve or generalize (1).

In [9], R. S. Hamilton discovered Li-Yau-type bound for the heat equation

(3)
|∇u|2

u2
− e2Kt ∂tu

u
≤ e4Kt n

2t
.

In [21], S.-T. Yau obtained the following estimate

(4)
|∇u|2

u2
− ∂tu

u
≤ n

2t
+

√
2nK

√
|∇u|2
u2

+
n

2t
+ 2nK.

In [2], D. Bakry and Z. M. Qian obtained

(5)
|∇u|2

u2
−
(
1 +

2

3
Kt

)
∂tu

u
≤ n

2t
+

nK

2

(
1 +

K

3
t

)
.

In [15], B. Qian improved the estimate (5) in the following form

|∇u|2

u2
−
(
1 +

2K

a(t)

∫ t

0

a(s)ds

)
∂tu

u
≤ nK

2
+

nK2

2a(t)

∫ t

0

a(s)ds(6)

+
n

8a(t)

∫ t

0

a′(s)2

a(s)
ds,

where a(t) : (0,∞) → (0,∞) is any C1 positive function that satisfies the
following two conditions:

(A1) For all t > 0, a(t) > 0, a′(t) > 0 and limt→0 a(t) = limt→0
a(t)
a′(t) = 0.

(A2) For any L > 0, a′(t)2

a(t) is continuous and integrable on the interval [0, L].
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In the above results, the constant α in (1) is replaced by functions in the
form of α(t,K) which is strictly greater than 1 but converges to 1 as t → 0.
Recently, Q. S. Zhang [25] obtains that for all closed manifolds one can take
α = 1 for K ≥ 0. It shows that if (Mn, g) is a closed Riemannian manifold
with Ric ≥ −K for K ≥ 0, and diamM is the diameter of M , then for any
positive solution u of the heat equation (∆− ∂t)u = 0,

t

(
|∇u|2

u2
− ∂tu

u

)
≤ n

2
+
√
2nK(1 +Kt)(1 + t)diamM(7)

+
√
K(1 +Kt)(C1t+ C2Kt),

where C1 and C2 are positive constants only depending on n. It is an improve-
ment on Li-Yau gradient bound (1) on closed manifolds.

In [27,28], Q. S. Zhang and M. Zhu obtained Li-Yau-type gradient estimates
under integral curvature assumptions. Moreover, Li-Yau-type bounds were also
got for weighted manifolds with Bakry-Émery Ricci curvature bounded below
[10]. More information about Li-Yau-type bounds can be found in [8,11,16,18,
22–24,26].

In this paper, we show optimal Li-Yau gradient bounds for f -heat equa-
tion on closed manifolds with either Bakry-Émery Ricci curvature or m-Bakry-
Émery Ricci curvature bounded below, which both generalize (7).

More precisely, we show that:

Theorem 1.1. Let (Mn, g) be a closed Riemannian manifold with Ricf ≥ −K
and |∇f | ≤ L for some constants K,L ≥ 0. Let u be a positive solution of the
f-heat equation on M× (0,+∞), i.e., (∆f −∂t)u = 0, and diamM the diameter
of M . Then there exists a constant c depending only on n such that

t

(
|∇u|2

u2
− ∂tu

u

)
(8)

≤ n

2
+ c(L+

√
K)
√
(1 +Kt)(1 + t)diamM

+ c(L+
√
K)
√
(1 +Kt)(t+Kt+ L2t+A2t+A2Kt),

where A = supx∈M |f(x)|.

Notice that (8) still holds when we add f by any constant. In particular,
for some point o ∈ M we may choose f such that f(o) equals zero. Then (8)
becomes

t

(
|∇u|2

u2
− ∂tu

u

)
(9)

≤ n

2
+ c(L+

√
K)
√

(1 +Kt)(1 + t)diamM

+ c(L+
√
K)
√

(1 +Kt)(t+Kt+ L2t+ L2diam2
M t+ L2diam2

MKt).
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If the potential function is constant, then from (9) we get a result similar to
(7).

Corollary 1.2. Let (Mn, g) be a closed Rimannian manifold with Ric ≥ −K,
where K ≥ 0. Let u be a positive solution of the heat equation on M×(0,+∞),
i.e., (∆−∂t)u = 0, and diamM the diameter of M . Then there exists a constant
c depending only on n such that

t

(
|∇u|2

u2
− ∂tu

u

)
≤ n

2
+ c
√
K(1 +Kt)(1 + t)diamM(10)

+ c
√
K(1 +Kt)(t+Kt).

For closed manifolds with m-Bakry-Émery Ricci curvature bounded below,
we have a similar result. But there is no assumption on the potential function
and the constants depend on m.

Theorem 1.3. Let (Mn, g) be a closed Riemannian manifold with Ricm,n
f ≥

−K for some constant K ≥ 0. Let u be a positive solution of the f-heat equation
on M × (0,+∞), i.e., (∆f − ∂t)u = 0, and diamM the diameter of M . Then
there exist constants c̃1 and c̃2 depending only on m such that

t

(
|∇u|2

u2
− ∂tu

u

)
≤ m

2
+
√
2mK(1 +Kt)(c̃1 + t)diamM(11)

+ c̃2
√
K(1 +Kt)(t+Kt).

If the potential function is constant, then we can take m = n and get a
result similar to Corollary 1.2.

Remark 1.4. The constants c, c̃1 and c̃2 in Theorem 1.1 and Theorem 1.3 arise
from the volume comparison theorem and upper and lower bounds for the f -
heat kernel. Since the lower bound constants of the f -heat kernel cannot be
written accurately, the constants c and c̃1 cannot be written as accurately as
Q. S. Zhang does.

We prove Theorem 1.1 and Theorem 1.3 separately in Sections 2 and 3.
The proofs follow a method of Q. S. Zhang [25]. It is sufficient to prove the
optimal Li-Yau bound for the f -heat kernel, then the same bound holds for
all positive solutions of the f -heat equation. The main tools in the proof of
Theorem 1.1 are relative volume comparison [19] of G. Wei and W. Wylie, Y.
Li’s Hamilton type estimates [10], the upper and lower bounds for the f -heat
kernel [20] and the Harnack inequality for the positive solutions of the f -heat

equation [20] proved by J. Wu and P. Wu for manifolds with Bakry-Émery
Ricci curvature bounded below. Here we generally assume that the potential
function is bounded or the gradient of the function is bounded. The proof of
Theorem 1.3 is similar to Theorem 1.1. However, in Theorem 1.3 for manifolds
with m-Bakry-Émery Ricci curvature bounded below, there is no assumption
on potential function and relative results can be found in [4, 10,19].
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2. Li-Yau gradient bounds on closed manifolds under Bakry-Émery
Ricci curvature conditions

In this section, we prove Theorem 1.1. First we present some results as
preparation.

Lemma 2.1 ([10], Hamilton type estimate). Suppose that (Mn, g) is a closed
Riemannian manifold with Ricf ≥ −K, where K ≥ 0. If u is a positive solution
of (∆f − ∂t)u = 0 with 0 < u ≤ B on M × (0, T ] for some constant B, then

|∇u|2

u2
≤ (

1

t
+ 2K) ln

B

u
,

on M × (0, T ].

In [19], G. Wei and W. Wylie proved the volume comparison theorem under

Bakry-Émery Ricci curvature conditions.

Lemma 2.2 ([19], Volume comparison). Let (Mn, g, e−fdv) be a complete
smooth metric measure space with Ricf ≥ (n− 1)H. For p ∈ M , If |f(x)| ≤ A
for some constant A, then for R ≥ r > 0 (assume R ≤ π

4
√
H

if H > 0),

Vf (Bp(R))

Vf (Bp(r))
≤

V n+4A
H (B(R))

V n+4A
H (B(r))

,

where V n
H(B(r)) is the volume of the geodesic ball with radius r in the model

space Mn
H and Vf (Bp(r)) is the weighted volume of the geodesic ball with radius

r in M centerd at p.

In [20], J. Wu and P. Wu showed that:

Lemma 2.3 ([20]). Let (Mn, g, e−fdv) be a complete noncompact smooth met-
ric measure space with Ricf ≥ −(n − 1)K for K ≥ 0. For any point o ∈ M

and R > 0, denote A(R) = sup
x∈Bo(3R)

|f(x)|, A
′
(R) = sup

x∈Bo(3R)

|∇f(x)|, and

let H(x, t, y) be the f-heat kernel. Then for any ϵ > 0, there exist constants
c3(n, ϵ), ci(n), 4 ≤ i ≤ 8, such that

c3e
c4A+c5(1+A)

√
Kt

V
1
2

f (Bx(
√
t))V

1
2

f (By(
√
t))

e

(
− d2(x,y)

(4+ϵ)t

)
≥ H(x, t, y)(12)

≥ c6e
−c7(A

′2+K)t

Vf (Bx(
√
t))

e

(
− d2(x,y)

c8t

)

for all x, y ∈ Bo(
1
2R) and 0 < t < R2

4 , where d(x, y) is the geodesic distance
between x and y.

Note that for closed Riemannian manifolds with Ricf ≥ −K and |∇f | ≤ L,
where K,L ≥ 0, the same bound still holds for all x, y ∈ M and t > 0.
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Lemma 2.4 ([20]). Let (Mn, g, e−fdv) be a complete noncompact smooth met-
ric measure space with Ricf ≥ −(n − 1)K for K ≥ 0. For any point o ∈ M

and R > 0, denote A
′
(R) = sup

y∈Bo(R+1)

|∇f(y)|. There exists a constant c(n)

such that, for two positive solutions u(x, s) and u(y, t) of the f-heat equation in
Bo

(
R
2

)
× (0, T ), 0 < s < t < T ,

ln

(
u(x, s)

u(y, t)

)
≤ c(n)

[(
A′2 +K +

1

R2
+

1

s

)
(t− s) +

d2(x, y)

t− s

]
.

Note that for closed Riemannian manifolds with Ricf ≥ −K and |∇f | ≤ L,
where K,L ≥ 0, there exists a constant c(n) such that, in M × (0,+∞), 0 <
s < t,

(13) u(x, s) ≤ u(y, t)e
c(n)

[
(L2+K+ 1

s )(t−s)+
d2(x,y)

t−s

]
.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let u = u(x, t) be a positive solution of the f -heat
equation on M × (0,+∞). Denote

Y = Y (x, t) = |∇ lnu|2 − ∂t(lnu)

=

(
|∇u|2

u2
− ∂tu

u

)
= −∆f lnu.

The Bochner formula [10] for Ricf is

(14)
1

2
∆f |∇u|2 = |Hess u|2 + ⟨∇∆fu,∇u⟩+Ricf (∇u,∇u).

Using (14) and the Bakry-Émery Ricci curvature condition, we have

(∆f − ∂t)Y + 2 ⟨∇Y,∇ lnu⟩(15)

= 2|Hess lnu|2 + 2Ricf (∇ lnu,∇ lnu)

≥ 2(∆ lnu)2

n
− 2K|∇ lnu|2

=
2(∆f lnu+ ⟨∇f,∇ lnu⟩)2

n
− 2K|∇ lnu|2

=
2

n
(∆f lnu)

2 +
4

n
(∆f lnu) ⟨∇f,∇ lnu⟩

+
2

n
| ⟨∇f,∇ lnu⟩ |2 − 2K|∇ lnu|2

≥ 2

n
Y 2 − 4

n
⟨∇f,∇ lnu⟩Y −

(
2

n
L2 + 2K

)
|∇ lnu|2.



LI-YAU GRADIENT ESTIMATES ON CLOSED MANIFOLDS 1029

Let Y +(x, t) = max{Y (x, t), 0}. Then the inequality (15) implies that Y + is a
subsolution of the inequality in the weak sense: on M × (0,+∞),

(∆f − ∂t)Y
+ + 2

〈
∇Y +,∇ lnu

〉
(16)

≥ 2

n
(Y +)2 − 4

n
⟨∇f,∇ lnu⟩Y + −

(
2

n
L2 + 2K

)
|∇ lnu|2.

For a positive integer j and a small positive number ϵ, multiplying both sides
of (16) by ((t − ϵ)+)2j+2(Y +)2j and integrating on M × (0, T ] for any T > 0,
we obtain

2

n

∫ T

0

∫
M

((t− ϵ)+Y +)2j+2dµdt(17)

≤
∫ T

0

∫
M

((t− ϵ)+)2j+2(Y +)2j(∆f − ∂t)Y
+dµdt

+ 2

∫ T

0

∫
M

((t− ϵ)+)2j+2(Y +)2j
〈
∇Y +,∇ lnu

〉
dµdt

+ (
2

n
L2 + 2K)

∫ T

0

∫
M

|∇ lnu|2((t− ϵ)+)2j+2(Y +)2jdµdt

+
4L

n

∫ T

0

∫
M

|∇ lnu|((t− ϵ)+)2j+2(Y +)2j+1dµdt

= T1 + T2 + T3 + T4.

Here we need to estimate the upper bound of (t− ϵ)+Y + on M × (0, T ]. Then
let us bound T1, T2, T3 and T4, respectively. Using integration by parts, we see
that

T1 = − 2j

∫ T

0

∫
M

((t− ϵ)+)2j+2(Y +)2j−1|∇Y +|2dµdt(18)

− 1

2j + 1

∫
M

∫ T

0

((t− ϵ)+)2j+2d(Y +)2j+1dµ

= − 2j

∫ T

0

∫
M

((t− ϵ)+)2j+2(Y +)2j−1|∇Y +|2dµdt

− 1

2j + 1

∫
M

((t− ϵ)+)2j+2(Y +)2j+1|T0 dµ

+
2j + 2

2j + 1

∫ T

0

∫
M

((t− ϵ)+Y +)2j+1dµdt

= − 2j

∫ T

0

∫
M

((t− ϵ)+)2j+2(Y +)2j−1|∇Y +|2dµdt

− 1

2j + 1

∫
M

((T − ϵ)+)2j+2(Y +)2j+1(x, T )dµ
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+
2j + 2

2j + 1

∫ T

0

∫
M

((t− ϵ)+Y +)2j+1dµdt.

Writing (Y +)2j∇Y + = 1
2j+1∇(Y +)2j+1 and doing integration by parts, we

deduce

T2 =
2

2j + 1

∫ T

0

∫
M

〈
∇(Y +)2j+1,∇ lnu

〉
((t− ϵ)+)2j+2dµdt(19)

= − 2

2j + 1

∫ T

0

∫
M

(∆f lnu)(Y
+)2j+1((t− ϵ)+)2j+2dµdt

≤ 2

2j + 1

∫ T

0

∫
M

((t− ϵ)+Y +)2j+2dµdt.

Throwing away the non-positive terms of (18) and plugging (18) and (19) into
(17), we arrive at

(
2

n
− 2

2j + 1
)

∫ T

0

∫
M

((t− ϵ)+Y +)2j+2dµdt(20)

≤ 2j + 2

2j + 1

∫ T

0

∫
M

((t− ϵ)+Y +)2j+1dµdt

+ (
2

n
L2 + 2K)

∫ T

0

∫
M

|∇ lnu|2((t− ϵ)+)2j+2(Y +)2jdµdt︸ ︷︷ ︸
T3

+
4

n
L

∫ T

0

∫
M

|∇ lnu|((t− ϵ)+)2j+2(Y +)2j+1dµdt︸ ︷︷ ︸
T4

.

This estimate holds for all positive solutions. Now we take, in particular
u = H(x, t, y) the f -heat kernel with pole at a fixed point y ∈ M . We will
find upper bounds for T3 and T4, which rely on the Hamilton type estimate
(Lemma 2.1).

For a time t0 > 0, we consider the f -heat kernelH(x, t+t0, y) with t ∈ [0, t0].
According to Lemma 2.3 , we can choose ϵ = 1 and find the upper and lower

bounds for f -heat kernel. There exist some positive constants C1, C2, C3, C4, C5

and C6 depending only on n such that

C1e
C2A+C3(1+A)

√
K(t+t0)

V
1
2

f (Bx(
√
t+ t0))V

1
2

f (By(
√
t+ t0))

e

(
− d2(x,y)

5(t+t0)

)
(21)

≥ H(x, t+ t0, y) ≥
C4e

−C5(L
2+K)(t+t0)

Vf (Bx(
√
t+ t0))

e

(
− d2(x,y)

C6(t+t0)

)
.
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This upper bound implies

B := sup
M×(0,t0)

H(x, t+ t0, y) ≤
C1e

C2A+C3(1+A)
√
2Kt0

infx∈M Vf (Bx(
√
t0))

,

which yields, by the lower bound of H(x, t+ t0, y), that

B

H(x, t+ t0, y)
≤ C7e

(
C2A+C3(1+A)

√
2Kt0+C5(L

2+K)(2t0)+
d2(x,y)
C6t0

)
(22)

×
supy∈M Vf (By(

√
2t0))

infx∈M Vf (Bx(
√
t0))

.

We notice that the infimum and supremum of the geodesic ball’s volumes can
be achieved by some points on M , say point p and point q, i.e.,

(23)
supy∈M Vf (By(

√
2t0))

infx∈M Vf (Bx(
√
t0))

=
Vf (Bq(

√
2t0))

Vf (Bp(
√
t0))

.

Here is the ratio of geodesic balls’s volumes at different points. Notice that
the relationship between the geodesic ball Bq(

√
2t0) and the geodesic ball

Bp(
√
2t0+d(p, q)) is Bq(

√
2t0) ⊂ Bp(

√
2t0+d(p, q)). Then applying the volume

comparison theorem (Lemma 2.2), we get

Vf (Bp(
√
2t0 + d(p, q)))

Vf (Bp(
√
2t0))

≤

∫ d(p,q)+
√
2t0

0

(
sinh

(√
K

n−1r
))n+4A−1

dr∫√
2t0

0

(
sinh

(√
K

n−1r
))n+4A−1

dr

(24)

≤
(
d(p, q)√

2t0
+ 1

)n+4A

e
d(p,q)

√
K

n−1 (n+4A−1)

= e
(n+4A) ln(

d(p,q)√
2t0

+1)+d(p,q)
√

K
n−1 (n+4A−1)

≤ e
(n+4A)

d(p,q)√
2t0

+d(p,q)
√

K
n−1 (n+4A−1)

,

and

Vf (Bp(
√
2t0))

Vf (Bp(
√
t0))

≤

∫√
2t0

0

(
sinh

(√
K

n−1r
))n+4A−1

dr∫√
t0

0

(
sinh

(√
K

n−1r
))n+4A−1

dr

(25)

≤ 2(
n+4A

2 )e
[(
√
2−1)

√
t0

√
K

n−1 ](n+4A−1)
.

Substituting (24) and (25) into (23), we find

supy∈M Vf (By(
√
2t0))

infx∈M Vf (Bx(
√
t0))

=
Vf (Bq(

√
2t0))

Vf (Bp(
√
t0))

≤ Vf (Bp(
√
2t0 + d(p, q)))

Vf (Bp(
√
t0))
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=
Vf (Bp(

√
2t0 + d(p, q)))

Vf (Bp(
√
2t0))

Vf (Bp(
√
2t0))

Vf (Bp(
√
t0))

≤ 2(
n+4A

2 )e
[(
√
2−1)

√
t0

√
K

n−1 ](n+4A−1)+(n+4A)
d(p,q)√

2t0
+d(p,q)

√
K

n−1 (n+4A−1)
.

This and (22) imply that

ln
B

H(x, t+ t0, y)

≤ lnC7 + C2A+ C3

√
2Kt0 + C3A

√
2Kt0 + 2C5L

2t0

+ 2C5Kt0 +
d2(x, y)

C6t0
+

nd(p, q)√
2t0

+ 2
√
2A

d(p, q)√
t0

+ d(p, q)
√

K(n− 1)

+ 4d(p, q)A

√
K

n− 1
+
√
K(n− 1)t0 + 4A

√
Kt0
n− 1

+
ln 2

2
(n+ 4A).

Using the following basic inequalities with√
Kt0 ≤ 1

4
+Kt0,

d(p, q)√
t0

≤ d2(p, q)

t0
+

1

4
,
Ad(p, q)√

t0
≤ d2(p, q)

t0
+

1

4
A2,

d(p, q)
√
K ≤ d2(p, q)

t0
+

1

4
Kt0, Ad(p, q)

√
K ≤ d2(p, q)

t0
+

1

4
A2Kt0,

A
√

Kt0 ≤ 1

4
A2 +Kt0,

we get

ln
B

H(x, t+ t0, y)
≤ C8

(
1 +A+Kt0 +AKt0 + L2t0 +

diam2
M

t0

+A2 +A2Kt0

)
, ∀t ∈ (0, t0].

Using A ≤ 1
4 +A2 gives that

ln
B

H(x, t+ t0, y)
≤ C9

(
1 +Kt0 + L2t0 +

diam2
M

t0
+A2 +A2Kt0

)
.

Hamilton type estimate (Lemma 2.1) implies that

t|∇x lnH(x, t+ t0, y)|2 ≤ C9(1 + 2Kt0)

(
1 +Kt0 + L2t0 +

diam2
M

t0

+A2 +A2Kt0

)
, t ∈ (0, t0].

We take t = t0 and use the arbitrariness of t0 to conclude

t|∇x lnH(x, t, y)|2 ≤ C10(1 +Kt)

(
1 +Kt+ L2t+

diam2
M

t
(26)

+A2 +A2Kt

)
, ∀t > 0.
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The bound is adequate for us when the time is short, say t ≤ 4. When t is
large, the f -heat kernel converges to the positive constant 1

Vf (M) , where Vf (M)

is the weighted volume of M . In this case the above bound becomes inaccurate.
Instead we will use a better bound based on the Harnack inequality (13).

Pick any time t ≥ 4. Since
∫
M

H(x, t + 1, y)dµ(x) = 1, there is a point

x1 ∈ M such that H(x1, t + 1, y) = 1
Vf (M) . According to (13), there exists a

dimensional constant C0 > 0 such that

H(x, t, y) ≤ H(x1, t+ 1, y)eC0(L
2+K+ 1

t+d2(x,x1)).

Since t ≥ 4, this implies

(27) H(x, t, y) ≤ 1

Vf (M)
eC0(L

2+K+ 1
4+diam2

M ) := B.

Similarly, there is a point x2 such that H(x2, t− 1, y) = 1
Vf (M) and that

H(x2, t− 1, y) ≤ H(x, t, y)eC0(L
2+K+ 1

t−1+d2(x,x2)),

which infers

(28) H(x, t, y) ≥ 1

Vf (M)
e−C0(L

2+K+ 1
3+diam2

M ).

Using (27) and (28), we find, for t0 ≥ 4, that

ln
B

H(x, t+ t0, y)
≤ 2C0(L

2 +K + 1 + diam2
M ), t ∈ (0, t0].

This and Lemma 2.1 yield

t|∇x lnH(x, t+ t0, y)|2 ≤ 2C0(1 + 2Kt0)(L
2 +K + 1 + diam2

M ), t ∈ (0, t0].

Therefore

(29) t|∇x lnH(x, t, y)|2 ≤ 4C0(1 +Kt)(L2 +K + 1 + diam2
M ), t ≥ 4.

Next plugging (26) for t < 4 and (29) for t ≥ 4 into the term T3 and T4 in (20)
with u = H(x, t, y), we obtain

T3 ≤
(
2

n
L2 + 2K

)(∫ 4

0

∫
M

|∇ lnu|2t2((t− ϵ)+Y +)2jdµdt

)
+

(
2

n
L2 + 2K

)(∫ T

4

∫
M

|∇ lnu|2t2((t− ϵ)+Y +)2jdµdt

)
≤ C11

(
L2 +K

)
(1 +KT )(T +KT + L2T +A2T +A2KT + diam2

M

+ Tdiam2
M )

∫ T

0

∫
M

((t− ϵ)+Y +)2jdµdt,

and

T4 ≤ 4

n
L

∫ 4

0

∫
M

t|∇ lnu|((t− ϵ)+Y +)2j+1dµdt
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+
4

n
L

∫ T

4

∫
M

t|∇ lnu|((t− ϵ)+Y +)2j+1dµdt

≤ C12L
√
(1 +KT )(T +KT + L2T +A2T +A2KT + diam2

M + Tdiam2
M )

×
∫ T

0

∫
M

((t− ϵ)+Y +)2j+1dµdt.

Denote λ=
√
(1+KT )(T +KT + L2T +A2T +A2KT + diam2

M + Tdiam2
M )

and (20) becomes(
2

n
− 2

2j + 1

)∫ T

0

∫
M

((t− ϵ)+Y +)2j+2dµdt(30)

≤
(
2j + 2

2j + 1
+ C12Lλ

)∫ T

0

∫
M

((t− ϵ)+Y +)2j+1dµdt

+ C11

(
L2 +K

)
λ2

∫ T

0

∫
M

((t− ϵ)+Y +)2jdµdt.

Using the notation

Aj,ϵ =

(∫ T

0

∫
M

((t− ϵ)+Y +)jdµdt

) 1
j

,

we can write (30) as(
2

n
− 2

2j + 1

)
A2j+2

2j+2,ϵ(31)

≤
(
2j + 2

2j + 1
+ C12Lλ

)
A2j+1

2j+1,ϵ + C11

(
L2 +K

)
λ2A2j

2j,ϵ.

By the Hölder inequality,

A2j+1
2j+1,ϵ ≤ A2j+1

2j+2,ϵ

(∫ T

0

∫
M

dµdt

) 1
2j+2

, A2j
2j,ϵ ≤ A2j

2j+2,ϵ

(∫ T

0

∫
M

dµdt

) 2
2j+2

,

which imply, together with (31), that(
2

n
− 2

2j + 1

)
A2

2j+2,ϵ(32)

≤
(
2j + 2

2j + 1
+ C12Lλ

)
A2j+2,ϵ

(∫ T

0

∫
M

dµdt

) 1
2j+2

+ C11

(
L2 +K

)
λ2

(∫ T

0

∫
M

dµdt

) 2
2j+2

.
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Letting j → ∞, we arrive at

(33)
2

n
A2

∞,ϵ ≤ (1 + C12Lλ)A∞,ϵ + C11(L
2 +K)λ2,

where A∞,ϵ = sup
M×[0,T ]

(t− ϵ)+Y +.

This shows

sup
M×[0,T ]

(t− ϵ)+Y +(34)

≤ n

2
+ C13(L+

√
K)
√
(1 +KT )(1 + T )diamM

+ C13(L+
√
K)
√
(1 +KT )(T +KT + L2T +A2T +A2KT ).

Since ϵ > 0 is arbitrary and Y = −∆f lnH(x, t, y), we conclude that

t

(
|∇H|2

H2
− ∂tH

H

)
(35)

≤ n

2
+ C13(L+

√
K)
√

(1 +Kt)(1 + t)diamM

+ C13(L+
√
K)
√

(1 +Kt)(t+Kt+ L2t+A2t+A2Kt), ∀t > 0.

From (35), a short argument from [25] (see also [24]) implies that the same
bound actually holds if one replaces the f -heat kernel by any positive solution
of the f -heat equation.

This completes the proof of Theorem 1.1. □

3. Li-Yau gradient bounds on closed manifolds under
m-Bakry-Émery Ricci curvature conditions

In this section, we prove Theorem 1.3. Since the proof of Theorem 1.3 is
similar, so we only present the key steps.

Before starting the proof of Theorem 1.3, let us present some results needed.
First of all, Y. Li showed Li-Yau gradient estimate for manifolds with m-Bakry-
Émery Ricci curvature bounded below.

Lemma 3.1 ([10], Li-Yau gradient estimate). Let (Mn, g, e−fdv) be a com-
plete Riemannian manifold with Ricm,n

f ≥ −K for K ≥ 0. Then any positive

solution u of the f-heat equation (∆f − ∂t)u = 0 on M × (0, T ] satisfies

|∇u|2

u2
− α

ut

u
≤ mα2K

α− 1
+

mα2

2t

for any α > 1.

Based on the above lemma, we can easily get the Harnack inequality.
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Corollary 3.2 (Harnack inequality). Under the same hypotheses as Lemma
3.1, we have

u(x, t1) ≤ u(y, t2)

(
t2
t1

)mα
2

e

(
αd2(x,y)
4(t2−t1)

+mαK
α−1 (t2−t1)

)

for all x, y ∈ M and 0 < t1 < t2 ≤ T .

In [19], G. Wei and W. Wylie proved the volume comparision for manifolds

with m-Bakry-Émery Ricci curvature bounded below (see also [7]).

Lemma 3.3 ([19], Volume comparison). Let (Mn, g, e−fdv) be a complete Rie-

mannian manifold with Ricm,n
f ≥ −(m − 1)H for H ≥ 0. Then

Vf (Bp(R))
V m
H (B(R)) is

nonincreasing in R.

In [4], N. Charalambous, Z. Lu and J. Rowlett got the upper and lower
bounds for the f -heat kernel.

Lemma 3.4 ([4]). Let (Mn, g, e−fdv) be a complete Riemannian manifold with
Ricm,n

f ≥ −K on Bo(4R + 4) ⊂ M for K ≥ 0, where o is a point on M and

R > 0. Then for any x, y ∈ Bo(
R
4 ), 0 < t < R2

4 , and δ1 ∈ (0, 1)

H(x, t, y) ≥ c̃6(δ1,m)V
− 1

2

f (Bx(
√
t))V

− 1
2

f (By(
√
t))e

(
−c̃7(δ1,m)

d2(x,y)
t −c̃8(m)Kt

)

and

H(x, t, y)

≤ c̃3(δ1,m)V
− 1

2

f (Bx(
√
t))V

− 1
2

f (By(
√
t))e

(
−λ1,f (M)t− d2(x,y)

c̃4(δ1,m)t
+c̃5(m)

√
Kt

)

for some positive constants c̃3(δ1,m), c̃4(δ1,m), c̃5(m), c̃6(δ1,m), c̃7(δ1,m) and
c̃8(m), where λ1,f (M) is the infimum of the weighted Rayleigh quotient on M .

Whenever Ricm,n
f ≥ −K on M with K ≥ 0, then the same bound also holds

for all x, y ∈ M and t > 0.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let u = u(x, t) be a positive solution of the f -heat
equation on M × (0,+∞). Write

Y = Y (x, t) =

(
|∇u|2

u2
− ∂tu

u

)
= −∆f lnu.

The Bochner formula [10] for Ricm,n
f is

1

2
∆f |∇u|2 = |Hess u|2 + ⟨∇∆fu,∇u⟩+Ricm,n

f (∇u,∇u)(36)

+
1

m− n
| ⟨∇f,∇u⟩ |2

≥ (∆fu)
2

m
+ ⟨∇∆fu,∇u⟩+Ricm,n

f (∇u,∇u).
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Using (36) and the m-Bakry-Émery Ricci curvature condition, we have

(∆f − ∂t)Y + 2 ⟨∇Y,∇ lnu⟩ = 2|Hess lnu|2 + 2Ricm,n
f (∇ lnu,∇ lnu)(37)

+
2

m− n
| ⟨∇f,∇ lnu⟩ |2

≥ 2(∆f lnu)
2

m
− 2K|∇ lnu|2

=
2

m
Y 2 − 2K|∇ lnu|2.

Let Y +(x, t) = max{Y (x, t), 0}. Then the inequality (37) implies that Y + is a
subsolution of the inequality in the weak sense: on M × (0,+∞),

(38) (∆f − ∂t)Y
+ + 2

〈
∇Y +,∇ lnu

〉
≥ 2

m
(Y +)2 − 2K|∇ lnu|2.

For a positive integer j and a small positive number ϵ, multiplying both sides
of (38) by ((t − ϵ)+)2j+2(Y +)2j and integrating on M × (0, T ] for any T > 0,
we obtain

2

m

∫ T

0

∫
M

((t− ϵ)+Y +)2j+2dµdt(39)

≤
∫ T

0

∫
M

((t− ϵ)+)2j+2(Y +)2j(∆f − ∂t)Y
+dµdt

+ 2

∫ T

0

∫
M

((t− ϵ)+)2j+2(Y +)2j
〈
∇Y +,∇ lnu

〉
dµdt

+ 2K

∫ T

0

∫
M

|∇ lnu|2((t− ϵ)+)2j+2(Y +)2jdµdt = T1 + T2 + T3.

Using integration by parts as (18) and (19) for T1 and T2, we have the similar
inequality (

2

m
− 2

2j + 1

)∫ T

0

∫
M

((t− ϵ)+Y +)2j+2dµdt(40)

≤ 2j + 2

2j + 1

∫ T

0

∫
M

((t− ϵ)+Y +)2j+1dµdt

+ 2K

∫ T

0

∫
M

|∇ lnu|2((t− ϵ)+)2j+2(Y +)2jdµdt︸ ︷︷ ︸
T3

.

Using the upper and lower bounds (Lemma 3.4) for the f -heat kernel
H(x, t, y) and Harnack inequality (Corollary 3.2), Hamilton type estimate
(Lemma 2.1) and the volume comparison theorem (Lemma 3.3) for mani-

folds with the m-Bakry-Émery Ricci curvature bounded below, we can find
the bound for t|∇x lnH(x, t, y)|2.
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For a time t0 > 0, we consider the f -heat kernel H(x, t+t0, y) with t ∈ [0, t0]
at a fixed point y ∈ M .

According to Lemma 3.4, we choose δ = 1
2 and there exist some positive

constants C̃1, C̃2, C̃3, C̃4, C̃5 and C̃6 depending only on m, such that

C̃1e
[− d2(x,y)

C̃2(t+t0)
+C̃3

√
K(t+t0)]

V
1
2

f (Bx(
√
t+ t0))V

1
2

f (By(
√
t+ t0))

(41)

≥ H(x, t+ t0, y) ≥
C̃4e

[−C̃5
d2(x,y)
(t+t0)

−C̃6K(t+t0)]

V
1
2

f (Bx(
√
t+ t0))V

1
2

f (By(
√
t+ t0))

.

The upper bound implies

B := sup
M×(0,t0)

H(x, t+ t0, y) ≤
C̃7e

C̃8Kt0

infz∈M Vf (Bz(
√
t0))

,

which yields, by the lower bound of H(x, t+ t0, y), that

(42)
B

H(x, t+ t0, y)
≤ C̃9e

[C̃10Kt0+C̃5
d2(x,y)

t0
] supw∈M Vf (Bw(

√
2t0))

infz∈M Vf (Bz(
√
t0))

.

We notice the infimum and supremum of the geodesic ball’s volumes can be
achieved by some points on M , say point p and point q, i.e.,

(43)
supw∈M Vf (Bw(

√
2t0))

infx∈M Vf (Bz(
√
t0))

=
Vf (Bq(

√
2t0))

Vf (Bp(
√
t0))

.

By Lemma 3.3, we get

Vf (Bp(
√
2t0 + d(p, q)))

Vf (Bp(
√
2t0))

≤

∫ d(p,q)+
√
2t0

0

(
sinh(

√
K

m−1r)
)m−1

dr∫√
2t0

0

(
sinh(

√
K

m−1r)
)m−1

dr

(44)

≤
(
d(p, q)√

2t0
+ 1

)m

e
√

K(m−1)d(p,q)

= e
m ln

(
d(p,q)√

2t0
+1

)
+
√

K(m−1)d(p,q)

≤ e
m

d(p,q)√
2t0

+
√

K(m−1)d(p,q)
,

and
Vf (Bp(

√
2t0))

Vf (Bp(
√
t0))

≤ C̃12e
C̃11

√
Kt0 .

This and (42) imply that

ln
B

H(x, t+ t0, y)
≤ ln C̃9 + C̃10Kt0 + C̃5

diam2
M

t0
+ ln C̃12 + C̃11

√
Kt0
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+m
diamM√

2t0
+
√
K(m− 1)diamM .

Since the m-Bakry-Émery Ricci curvature bounded below, we can deduce
Bakry-Émery Ricci curvature bounded below, so we can still use Lemma 2.1
and that

t|∇x lnH(x, t+ t0, y)|2 ≤ C̃13(1 + 2Kt0)

(
1 +Kt0 +

diam2
M

t0

)
, t ∈ (0, t0].

Then we conclude

(45) t|∇x lnH(x, t, y)|2 ≤ C̃14(1 +Kt)

(
1 +Kt+

diam2
M

t

)
, ∀t > 0.

The bound is adequate for us when then time is short, say t ≤ 4. For any
time t ≥ 4, since

∫
M

H(x, t + 1, y)dµ(x) = 1, there is a point x1 ∈ M such

that H(x1, t + 1, y) = 1
Vf (M) . According to Corollary 3.2 with α = 2, t1 = t,

t2 = t+ 1, we have

H(x, t, y) ≤ H(x1, t+ 1, y)

(
t+ 1

t

)m

e

(
2mK+

d2(x,x1)
2

)
.

Since t ≥ 4, this implies

(46) H(x, t, y) ≤
(
5

4

)m
1

Vf (M)
e

(
2mK+

diam2
M

2

)
:= B.

Similarly, there is a point x2 such that H(x2, t− 1, y) = 1
Vf (M) and that

H(x2, t− 1, y) ≤ H(x, t, y)

(
t

t− 1

)m

e

(
2mK+

d2(x,x2)
2

)
,

which implies

(47) H(x, t, y) ≥
(
3

4

)m
1

Vf (M)
e

(
−2mK− diam2

M
2

)
, t ≥ 4.

Using (46) and (47), we find, for t0 ≥ 4, that

ln
B

H(x, t+ t0, y)
≤ m ln 2 + 4mK + diam2

M , t ∈ (0, t0].

This and Lemma 2.1 yield

t|∇x lnH(x, t+ t0, y)|2 ≤ (1 + 2Kt0)(m ln 2 + 4mK + diam2
M ), t ∈ (0, t0].

Therefore

(48) t|∇x lnH(x, t, y)|2 ≤ 2(1 +Kt)(m ln 2 + 4mK + diam2
M ), t ≥ 4.

Next, plugging (45) for t < 4 and (48) for t ≥ 4 into the term T3 in (40) with
u = H(x, t, y), we obtain

T3 ≤ K(1+KT )(C̃15(T+KT+diam2
M )+Tdiam2

M )

∫ T

0

∫
M

((t−ϵ)+Y +)2jdµdt.
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These are the key steps to prove Theorem 1.3 and the rest of the proof is similar
to Theorem 1.1. □
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