DOI QR코드

DOI QR Code

미세먼지 집진을 위한 직접 하전 방식 정전분무의 최적 동작 조건에 관한 연구

The Study on the Optimal Operating Conditions of Direct Charging Type Electrospray for Particulate Matter Collection

  • 최수기 (세명대학교 소방방재학과) ;
  • 김성환 (인하대학교 전기공학과) ;
  • 정해영 (세명대학교 소방방재학과)
  • Sugi Choi (Department of Fire and Disaster Prevention, Semyung University) ;
  • Sunghwan Kim (Department of Electrical Engineering, Inha University) ;
  • Haiyoung Jung (Department of Fire and Disaster Prevention, Semyung University)
  • 투고 : 2023.05.15
  • 심사 : 2023.07.01
  • 발행 : 2023.09.01

초록

This paper is an experimental study on the optimal operating conditions of direct charging type electrospray for particulate matter collection. To perform the research, a direct charging type electrospray visualization system was configured to photograph the spray shape of microdroplets, and experiments were performed with varying electrode distance, flow rate, and applied voltage, which are the main factors affecting the particulate matter collection efficacy. Through image processing, the total number of microdroplets according to each condition was analyzed, and the number of microdroplets with a diameter of 1.5 mm or less was confirmed. In addition, by calculating the number of microdroplets per power consumption according to the applied voltage, the optimal operating conditions were derived in terms of energy consumption efficacy, and the microdroplet size distribution was analyzed under the optimal operating conditions. As a result of the experiment, it was confirmed that the optimal operating condition was at a flow rate of 10 mL/min and a voltage of -20 kV in case of 5 mm electrode distance, and at a flow rate of 15 mL/min and a voltage of -30 kV in case of 100 mm electrode distance.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2021-KA164174).

참고문헌

  1. M. Santibanez-Andrade, Y. I. Chirino, I. Gonzalez-Ramirez, Y. Sanchez-Perez, and C. M. Garcia-Cuellar, Int. J. Mol. Sci., 21, 136 (2019). doi: https://doi.org/10.3390/ijms21010136
  2. C. I. Falcon-Rodriguez, A. R. Osornio-Vargas, I. Sada-Ovalle, and P. Segura-Medina, Front. Immunol., 7, 3 (2016). doi: https://doi.org/10.3389/fimmu.2016.00003
  3. J. H. Kim, Korean J. Atmos. Environ., 15, 33 (1999). UCI: I410-ECN-0101-2009-539-012123063
  4. S. Y. Kim, Master's Thesis, Study on High-Performance Electrospray Electrostatic Precipitator for Ultrafine PM Removal, p. 11-12, Chung-Ang University in Korea, Seoul (2021).
  5. Z. Wang, Q. Wang, B. Li, Y. Zhang, J. Wang, and J. Tu, Exp. Therm Fluid Sci., 114, 110054 (2020). doi: https://doi.org/10.1016/j.expthermflusci.2020.110054
  6. Q. Wang, Z. Wang, S. Yang, B. Li, H. Xu, K. Yu, and J. Wang, Exp. Therm Fluid Sci., 121, 110260 (2021). doi: https://doi.org/10.1016/j.expthermflusci.2020.110260
  7. G. I. Taylor, Proc. R. Soc. A, 313, 453 (1969). doi: https://doi.org/10.1098/rspa.1969.0205
  8. S. Kim, M. Jung, S. Choi, J. Lee, J. Lim, and M. Kim, Exp. Therm Fluid Sci., 118, 110151 (2020). doi: https://doi.org/10.1016/j.expthermflusci.2020.110151
  9. Y. Cho, S. Kim, H. Lim, S. Choi, and M. Kim, J. Mech. Sci. Technol., 33, 4563 (2019). doi: https://doi.org/10.1007/s12206- 019-0853-5
  10. M. K. Jung, S. Y. Kim, J. H. Lim, J. W. Lee, and S. H. Jeong, Trans. Korean Soc. Mech. Eng., 46, 121 (2022). doi: https://doi.org/10.3795/KSME-B.2022.46.2.121
  11. H. M. Davenport and L. K. Peters, Atmos. Environ., 12, 997 (1978). doi: https://doi.org/10.1016/0004-6981(78)90344-X
  12. C. Carotenuto, F. Di Natale, and A. Lancia, Biochem. Eng. J., 165, 35 (2010). doi: https://doi.org/10.1016/j.cej.2010.08.049
  13. A. M. Ganan-Calvo, Phys. Rev. Lett., 79, 217 (1997). doi: https://doi.org/10.1103/PhysRevLett.79.217
  14. R.P.A. Hartman, D. J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, and B. Scarlett, J. Aerosol Sci., 31, 65 (2000). doi: https://doi.org/10.1016/S0021-8502(99)00034-8
  15. Y. J. Yang, S. W. Kim, H. B. Kim, H. C. Yang, J. H. Lim, and K. H. Choi, Clean Technol., 22, 232 (2016). doi: https://doi.org/10.7464/ksct.2016.22.4.232