DOI QR코드

DOI QR Code

Recent Advances in a-IGZO Thin Film Transistor Devices: A Short Review

  • Jingwen Chen (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Fucheng Wang (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Yifan Hu (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jaewoong Cho (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Yeojin Jeong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Duy Phong Pham (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Junsin Yi (College of Information and Communication Engineering, Sungkyunkwan University)
  • 투고 : 2023.05.30
  • 심사 : 2023.06.25
  • 발행 : 2023.09.01

초록

In recent years, the transparent amorphous oxide thin film transistor represented by indium-gallium-zinc-oxide (IGZO) has become the first choice of the next generation of integrated circuit control components. This article contributes an overview of IGZO thin-film transistors (TFTs), including their fundamental principles and recent advancements. The paper outlines various TFT structures and places emphasis on the fabrication process of the active layer. The result showed that the size of the active layer including the length-to-width ratio and the width could have a significant effect on the mobility. And the process of TFT could influence the crystal structure of IGZO thin film. Furthermore, the article presents an overview of recent applications of IGZO TFTs, such as their use in display drivers and TFT memories. At last, the future development of IGZO TFT is forecasted in this paper.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No.NRF-2022R1A4A1028702).

참고문헌

  1. J. Liu, R. Liu, S. Zhan, Q. Luo, R. Chen, and X. Cheng, IEEE Trans. Electron Devices, 70, 1682 (2023). doi: https://doi.org/10.1109/ted.2023.3241572
  2. J. Y. Kwon, D. J. Lee, and K. B. Kim, Electron. Mater. Lett., 7, 1 (2011). doi: https://doi.org/10.1007/s13391-011-0301-x
  3. Y. Zhu, Y. He, S. Jiang, L. Zhu, C. Chen, and Q. Wan, J. Semicond., 42, 031101 (2021). doi: https://doi.org/10.1088/1674-4926/42/3/031101
  4. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003). doi: https://doi.org/10.1126/science.1083212
  5. S. Knobelspies, B. Bierer, A. Daus, A. Takabayashi, G. A. Salvatore, G. Cantarella, A. O. Perez, J. Wollenstein, S. Palzer, and G. Troster, Sensors, 18, 358 (2018). doi: https://doi.org/10.3390/s18020358
  6. Q. Z. Chen, C. Y. Shi, M. J. Zhao, P. Gao, W. Y. Wu, D. S. Wuu, R. H. Horng, S. Y. Lien, and W. Z. Zhu, IEEE Electron Device Lett., 44, 448 (2023). doi: https://doi.org/10.1109/led.2023.3239379
  7. C. H. Wu, S. K. Mohanty, B. W. Huang, K. M. Chang, S. J. Wang, and K. J. Ma, Nanotechnology, 34, 175202 (2023). doi: https://doi.org/10.1088/1361-6528/acb5f9
  8. Z. Cao, X. Huo, Q. Ma, J. Song, Q. Pan, L. Chen, J. Lai, X. Shan, and J. Gao, Sens. Actuators, B, 385, 133685 (2023). doi: https://doi.org/10.1016/j.snb.2023.133685
  9. J. Choi, J. Cho, H. Kim, S. Jeong, T. Kim, S. K. Dhungel, Y. Kim, J. K. Song, Y. S. Kim, and D. P. Pham, ECS J. Solid State Sci. Technol., 12, 034001 (2023). doi: https://doi.org/10.1149/2162-8777/acbedd
  10. C. Liu, H. Zhou, Z. Jiang, and H. Xu, Proc. 2019 IEEE 2nd International Conference on Electronics Technology (ICET) (IEEE, Chengdu, China, 2019) p. 354. doi: https://doi.org/10.1109/ELTECH.2019.8839489
  11. G. Packard, R. G. Manley, and K. D. Hirschman, ECS Trans., 90, 79 (2019). doi: https://doi.org/10.1149/09001.0079ecst
  12. S. Lee, J. S. Park, and Y. Hong, J. Korean Phys. Soc., 77, 277 (2020). doi: https://doi.org/10.3938/jkps.77.277
  13. M. Moreno, A. Ponce, A. Galindo, E. Ortega, A. Morales, J. Flores, R. Ambrosio, A. Torres, L. Hernandez, H. Vazquez-Leal, G. Patriarche, and P.R.I. Cabarrocas, Materials, 14, 6947 (2021). doi: https://doi.org/10.3390/ma14226947
  14. H. Xu, G. Wan, J. Mai, Z. Jiang, B. Liu, and S. Zhang, Semicond. Sci. Technol., 38, 035006 (2023). doi: https://doi.org/10.1088/1361-6641/acb2e8
  15. Y. Zhang, J. Li, J. Li, T. Huang, Y. Guan, Y. Zhang, H. Yang, M. Chan, X. Wang, L. Lu, and S. Zhang, IEEE Electron Device Lett., 44, 444 (2023). doi: https://doi.org/10.1109/led.2023.3237747
  16. T. Anutgan and M. Anutgan, IEEE Trans. Electron Devices, 68, 6182 (2021). doi: https://doi.org/10.1109/ted.2021.3119540
  17. C. W. Kuo, T. C. Chang, J. J. Chen, K. J. Zhou, and T. M. Tsai, IEEE Trans. Electron Devices, 69, 6789 (2022). doi: https://doi.org/10.1109/ted.2022.3217246
  18. C. Wang, C. Peng, P. Wen, M, Xu, L. Chen, X. Li, and J. Zhang, IEEE Trans. Electron Devices, 70, 1687 (2023). doi: https://doi.org/10.1109/ted.2023.3244903
  19. H. M. Ahn, S. H. Moon, Y. H. Kwon, N. J. Seong, K. J. Choi, C. S. Hwang, J. H. Yang, Y. H. Kim, and S. M. Yoon, IEEE Electron Device Lett., 43, 1909 (2022). doi: https://doi.org/10.1109/led.2022.3210162
  20. S. H. Moon, S. H. Bae, Y. H. Kwon, N. J. Seong, K. J. Choi, and S. M. Yoon, Ceram. Int., 48, 20905 (2022). doi: https://doi.org/10.1016/j.ceramint.2022.04.082
  21. Y. F. Tu, C. L. Chiang, T. C. Chang, Y. H. Hung, L. C. Sun, C. W. Kuo, H. Y. Tu, H. C. Huang, and C. H. Lien, IEEE Trans. Electron Devices, 69, 3181 (2022). doi: https://doi.org/10.1109/ted.2022.3166745
  22. S. K. Kim, Y. J. Choi, S. I. Cho, K. S. Cho, and J. Jang, SID Symp. Dig. Tech. Pap., 29, 379 (1998). doi: https://doi.org/10.1889/1.1833771
  23. J. Park, S. Choi, S. J. Myoung, J. Y. Kim, C. Kim, S. J. Choi, D. M. Kim, J. H. Bae, and D. H. Kim, IEEE Electron Device Lett., 44, 96 (2023). doi: https://doi.org/10.1109/led.2022.3225838
  24. H. Xie, Ph.D. Mechanism Investigation and Process Development of Nitrogen-Doped Amorphous Oxide Semiconductor Thin Film Transistors, Dissertation Submitted to Shanghai Jiao Tong University, 2018.
  25. F. M. Hossain, J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, and M. Kawasaki, J. Appl. Phys., 94, 7768 (2003). doi: https://doi.org/10.1063/1.1628834
  26. H. H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C. C. Wu, Appl. Phys. Lett., 92, 133503 (2008). doi: https://doi.org/10.1063/1.2857463
  27. G. Zhang, Design and Researches on a-IGZO-Based TFT, Telecommunication for the Degree of Master of Engineering, 2016.
  28. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). doi: https://doi.org/10.1038/nature03090
  29. A. Sharma, P. G. Bahubalindruni, M. Bharti, and P. Barquinha, Solid-State Electron., 192, 108273 (2022). doi: https://doi.org/10.1016/j.sse.2022.108273
  30. M. Guo, H. Ou, D. Xie, Q. Zhu, M. Wang, L. Liang, F. Liu, C. Ning, H. Cao, G. Yuan, X. Lu, and C. Liu, Adv. Electron. Mater., 9, 2201184 (2023). doi: https://doi.org/10.1002/aelm.202201184
  31. H. K. Noh, J. S. Park, and K. J. Chang, J. Appl. Phys., 113, 063712 (2013). doi: https://doi.org/10.1063/1.4792229
  32. S. J. Park and T. J. Ha, IEEE Electron Device Lett., 44, 642 (2023). doi: https://doi.org/10.1109/led.2023.3243838
  33. P. C. Lai, C. L. Lin, and J. Kanicki, IEEE Trans. Electron Devices, 66, 436 (2019). doi: https://doi.org/10.1109/ted.2018.2877945
  34. D. Wang, J. Y. Wan, D. Wang, R. H. Guo, H. M. Zhan, X. Chen, and X. B. Shao, Chin. J. Liq. Cryst. Disp., 36, 1264 (2021). doi: https://doi.org/10.37188/cjlcd.2021-0080
  35. W. Choi, G. Kim, H. Y. Kim, C. Yoo, J. W. Jeon, B. Park, G. Jeon, S. Jeon, S. Kang, Y. Lee, and C. S. Hwang, ACS Appl. Electron. Mater., 5, 1721 (2023). doi: https://doi.org/10.1021/acsaelm.2c01757
  36. M. M. Hasan, S. Roy, Mohit, E. Tokumitsu, H. Y. Chu, S. C. Kim, and J. Jang, Appl. Surf. Sci., 611, 155533 (2023). doi: https://doi.org/10.1016/j.apsusc.2022.155533
  37. L. Xu, J. Guo, C. Sun, Z. Zheng, Y. Xu, S. Huang, K. Han, W. Wei, Z. Guo, X. Gong, Q. Luo, L. Wang, and L. Li, IEEE Electron Device Lett., 44, 412 (2023). doi: https://doi.org/10.1109/led.2022.3233824
  38. K. Yang, S. H. Kim, H. W. Jeong, D. H. Lee, G. H. Park, Y. Lee, and M. H. Park, Chem. Mater., 35, 2219 (2023). doi: https://doi.org/10.1021/acs.chemmater.2c03379
  39. S. Knobelspies, A. Daus, G. Cantarella, L. Petti, N. Munzenrieder, G. Troster, and G. A. Salvatore, Adv. Electron. Mater., 2, 1600273 (2016). doi: https://doi.org/10.1002/aelm.201600273
  40. I. S. Lee, H. Kim, M. K. Park, J. Hwang, R. H. Koo, J. J. Kim, and J. H. Lee, IEEE Electron Device Lett., 44, 325 (2023). doi: https://doi.org/10.1109/LED.2022.3229321
  41. Y. Jeong, H. Kim, J. Oh, S. Y. Choi, and H. Park, J. Electron. Mater., 52, 3914 (2023). doi: https://doi.org/10.1007/s11664-023-10386-x
  42. C. H. Choi, T. Kim, M. J. Kim, S. H. Yoon, and J. K. Jeong, IEEE Trans. Electron Devices, 70, 2317 (2023). doi: https://doi.org/10.1109/TED.2023.3261281
  43. J. Li, Y. Guan, J. Li, Y. Zhang, Y. Zhang, M. Chan, X. Wang, L. Lu, and S. Zhang, Nanotechnology, 34, 265202 (2023). doi: https://doi.org/10.1088/1361-6528/acc742
  44. Y. Guan, Y. Zhang, J. Li, J. Li, Y. Zhang, Z. Wang, Y. Ding, M. Chan, X. Wang, L. Lu, and S. Zhang, Appl. Surf. Sci., 625, 157177 (2023). doi: https://doi.org/10.1016/j.apsusc.2023.157177
  45. B. Li, X. H. Gao, W. T. Zhang, T. Y. Wang, and B. C. Kim, Comput. Knowl. Technol., 15, 1009 (2019). doi: https://doi.org/10.14004/j.cnki.ckt.2019.1418
  46. M. Hu, L. Xu, X. Zhang, H. Hao, S. Zong, H. Chen, Z. Song, S. Luo, and Z. Zhu, Appl. Phys. Lett., 122, 033503 (2023). doi: https://doi.org/10.1063/5.0131595
  47. Y. Magari, T. Kataoka, W. Yeh, and M. Furuta, Nat. Commun., 13, 1078 (2022). doi: https://doi.org/10.1038/s41467-022-28480-9