DOI QR코드

DOI QR Code

마그네슘-알루미늄(Mg-Al) 합금 분말의 염소이온 정량법의 비교에 관한 연구

A Study on the Comparison of Chloride Ion Quantification Methods for Magnesium-Aluminum (Mg-Al) Alloy Powder

  • 김윤환 (조선선재온산(주)기술연구소) ;
  • 최영선 (부산대학교 화공생명공학부)
  • Yunhwan, Kim (Chosun Welding R&D Center) ;
  • Youngson Choe (Department of Chemical Engineering, The Graduate School of Industry, Pusan National University)
  • 투고 : 2023.06.19
  • 심사 : 2023.07.09
  • 발행 : 2023.08.10

초록

플럭스 코어 아크 용접(flux cored arc welding, FCAW)에서 플럭스(flux)로 사용되는 합금 분말 내의 염소이온은 용접 금속의 비드 표면에 기공을 유발하여 불량을 유발하거나, 합금 분말에 잔류한 염소가 금속의 부식을 유발할 수 있다. 합금 분말의 염소이온 정량은 주로 연소-이온크로마토그래피법이 사용되나, 장비가 고가이며 고도의 전문성이 요구되는 한계가 있다. 따라서, 본 연구에서는 합금 분말의 염소이온 정량으로 주로 쓰이는 방법인 연소-이온크로마토그래피 법과 X-선 형광분석법, 그리고 전위차 적정법을 비교하여 현장에서 적용하기 쉽고 정확한 정량법을 찾고자 한다. 염소이온 정량의 대상으로는 플럭스로 가장 흔히 사용되는 마그네슘-알루미늄 합금 분말을 대상으로 한다. 본 연구의 결과를 통해, 전위차 적정법을 현장에서 합금 분말의 염소이온 정량에 적용할 수 있다.

Chloride ions in the alloy powder used as flux in Flux Cored Arc Welding (FCAW) can cause pores on the bead surface of the welding metal to cause defects, or chloride remaining in the alloy powder can cause corrosion of the metal. Combustion-ion chromatography is mainly used to quantify the chloride ions in alloy powder, but there is a limitation in that the equipment is expensive and requires a high degree of expertise. Therefore, this study aims to find an easy and accurate quantification method in the field by comparing combustion-ion chromatography (C-IC), which is mainly used for chloride ion quantification of alloy powder, X-ray fluorescence analysis (XRF), and potentiometric titration. In this article, magnesium-aluminum alloy powder is applied to the quantification of chloride ions because it is most commonly used as flux. This study confirmed that potentiometric titration can be applied to the quantification of chloride ions in the alloy powder in the industry field.

키워드

참고문헌

  1. J. D. Lee, Effect of Alloying Elements on the Sintering Behaviour of Aluminum Powder Mixture, PhD Dissertation, Ajou University, Suwon, Korea (2003).
  2. S. T. Park, J. P. Jung, and C. J. Seo, Weldabilities of 7000 aluminium alloys (II), J. Weld. Join., 12, 64-75 (1994).
  3. C. Yoo, Characteristics of Microstructure and CTOD of Flux Cored Arc Welding Has Different Component for S500 Grade Steel, Master Dissertation, Kyungpook National University, Daegu, Korea (2015).
  4. M. J. Shaw and P. R. Haddad, The determination of trace metal pollutants in environmental matrices using ion chromatography, Environ. Int., 30, 403-431 (2004). https://doi.org/10.1016/j.envint.2003.09.009
  5. E. Proverbio and F. Cararssiti, Evaluation of chloride content in concrete by X-ray fluorescence, Cem. Concr. Res., 27, 1213-1223 (1997). https://doi.org/10.1016/S0008-8846(97)00108-7
  6. J. S. Lee, H. H. Park, and J. E. Yoo, Stability evaluation on measuring water-soluble chloride anions from iron artifacts, J. Conserv. Sci., 26, 397-406 (2010).
  7. Y. S. Kong, Effect of Flux composition on Bead Configuration in SAW welding of Mild Steel, Master Dissertation, Daegu University, Gyungsan, Korea (2014).
  8. Gisullab, Defects in weld, HYPERLINK "https//gisullab.com/tip/12205" https://gisullab.com/tip/12205 (Accessed on April 3, 2023).
  9. KS F 2713, Standard test method for analysis of chloride in concrete and concrete raw materials (2017).
  10. S. A. Lee, Study on the Analytic Method of Chlorine Contents in Solid Wastes, Master Dissertation, Suwon University, Suwon, Korea (2003).
  11. K. M. Lee, I. J. Yoon, and I. H. Seo, Study for the determination of chloride ion in hardened concrete using potentiometic methods, Int. J. Concr. Struct. Mater., 18, 578-581 (2006).
  12. S. M. Kim and H. O. Pak, Comparison of sodium contents in nutrition facts and sodium contents of hmr products by salinity meter and mohr method, Korean Soc. Food Cult, 34, 761-770 (2019).
  13. E. Proverbio and F. Carassiti, Evaluation of chloride content in concrete by x-ray fluorescence, Cem. Concr. Res., 27, 1213-1223 (1997) https://doi.org/10.1016/S0008-8846(97)00108-7