참고문헌
- Abdelaziz, Y. and Hamouine, A. (2008), "A survey of the extended finite element", Comput. Struct., 86, 1141-1151. https://doi.org/10.1016/j.compstruc.2007.11.001.
- Ahmed, A. (2009), "Extended finite element method (XFEM) - Modeling arbitrary discontinuities and failure analysis", Master's thesis, University of Pavia, Pavia, Lombardy, Italy.
- Akhondzadeh, S., Khoei, A.R. and Broumand, P. (2017), "An efficient enrichment strategy for modeling stress singularities in isotropic composite materials with X-FEM technique", Eng. Fract. Mech., 169, 201-225. https://doi.org/10.1016/j.engfracmech.2016.11.019.
- Arregui-Mena, J.D., Margetts, L. and Mummery, P.M. (2016), "Practical application of the stochastic finite element method", Arch. Comput. Methods Eng., 23, 171-190. https://doi.org/10.1007/s11831-014-9139-3.
- Awang, M., Khalili, A.A. and Pedapati, S.R. (2020), "A review: Thin protective coating for wear protection in high-temperature application", Metal., 10, 42. https://doi.org/10.3390/met10010042.
- Bahloul, A., Ahmed, A.B. and Bouraoui, C. (2017), "Probabilistic fatigue crack growth assessment of Al 7075-T6 aerospace component", Proc. Struct. Integr., 5, 430-437. https://doi.org/10.1016/j.prostr.2017.07.192.
- Bhardwaj, G., Singh, I.V. and Mishra, B.K. (2015), "Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA", Comput. Method. Appl. Mech. Eng., 284, 186-229. https://doi.org/10.1016/j.cma.2014.08.015.
- Chakraborty, A. and Rahman, S. (2008), "Stochastic multiscale models for fracture analysis of functionally graded materials", Eng. Fract. Mech., 75, 2062-2086. https://doi.org/10.1016/j.engfracmech.2007.10.013.
- Choi, S.K., Canfield, R.A. and Grandhi, R.V. (2007), Reliability-Based Structural Design, Springer London, UK.
- Chowdhury, M.S., Song, C. and Gao, W. (2011), "Probabilistic fracture mechanics by using Monte Carlo simulation and the scaled boundary finite element method", Eng. Fract. Mech., 78, 2369-2389. https://doi.org/10.1016/j.engfracmech.2011.05.008.
- Daux, C., Moes, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary branched and intersecting cracks with the extended finite element method", Int. J. Numer. Method. Eng., 48, 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12%3C1741::AID-NME956%3E3.0.CO;2-L.
- Evangelatos, G.I. and Spanos, P.D. (2011), "A collocation approach for spatial discretization of stochastic peridynamic modeling of fracture", J. Mech. Mater. Struct., 6, 1171-1195. http://doi.org/10.2140/jomms.2011.6.1171.
- Faisal, N., Cora, O.N., Bekci, M.L., Sliwa R.E., Sternberg Y., Pant, S., Degenhardt, R. and Prathuru, A. (2021), "Defect types", Structural Health Monitoring Damage Detection Systems for Aerospace, Springer, Cham, Switzerland.
- Guo, J.H., Lu, Z.X., Han, H.T. and Yang, Z. (2009), "Exact solutions for anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material", Int. J. Solids Struct., 46, 3799-3809. https://doi.org/10.1016/j.ijsolstr.2009.07.002.
- Haldar, A. and Mahadevan, S. (2000), Probability, Reliability, and Statistical Methods in Engineering Design, Wiley, Hoboken, NJ, USA.
- Khasin, V.L. (2014), "Stochastic model of crack propagation in brittle heterogeneous materials", Int. J. Eng. Sci., 82, 101-123. https://doi.org/10.1016/j.ijengsci.2014.04.002.
- Kumar, S., Singh, I.V. and Mishra, B.K. (2014), "XFEM simulation of stable crack growth using J-R curve under finite strain plasticity", Int. J. Mech. Mater. Des., 10, 165-177. https://doi.org/10.1007/s10999-014-9238-1.
- Lal, A. and Markad K.M. (2021), "Probabilistic based nonlinear progressive failure analysis of piezoelectric laminated composite shell panels in hygrothermal environment", J. Aerosp. Eng. (ASCE), 34(6), https://doi.org/10.1061/(ASCE)AS.1943-5525.0001345.
- Lal, A. and Palekar, S.P. (2017), "Stochastic fracture analysis of laminated composite plate with arbitrary cracks using X-FEM", Int. J. Mech. Mater. Des., 13, 195-228. https://doi.org/10.1007/s10999-015-9325-y.
- Li, F.Z., Shih, C.F. and Needleman, A. (1985), "A comparison of methods for calculating energy release rates", Eng. Fract. Mech., 21, 405-421. https://doi.org/10.1016/0013-7944(85)90029-3.
- Lyathakula, K.R. and Yuan, F.G. (2021), "A probabilistic fatigue life prediction for adhesively bonded joints via ANNs-based hybrid model", Int. J. Fatig., 151, 106352. https://doi.org/10.1016/j.ijfatigue.2021.106352.
- Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO,2-J.
- Niu, X.P., Wang, R.Z., Liao, D., Zhu, S.P., Zhang, X.C. and Keshtegar, B. (2021), "Probabilistic modeling of uncertainties in fatigue reliability analysis of turbine bladed disks", Int. J. Fatig., 142, 105912. https://doi.org/10.1016/j.ijfatigue.2020.105912.
- Pais, M. (2011a), MATLAB Extended Finite Element (MXFEM) Code v1.2, www.matthewpais.com.
- Pais, M.J. (2011b), "Variable amplitude fatigue analysis using surrogate models and exact XFEM reanalysis", Ph.D. Dissertation, University of Florida, Gainesville, Florida, USA.
- Pawel, S. (2017), "An improved XFEM for the poisson equation with discontinuous coefficients", Arch. Mech. Eng., 64(1), 1-22. https://doi.org/10.1515/meceng-2017-0008.
- Pietruszczak, S. and Haghighat, E. (2014), "Modeling of fracture propagation in concrete structures using a constitutive relation with embedded discontinuity", Stud. Geotech. Mech., 36(4), 27-33. https://doi.org/10.2478/sgem-2014-0033.
- Rahman, S. and Chakraborty, A. (2011), "Stochastic multiscale fracture analysis of three-dimensional functionally graded composites", Eng. Fract. Mech., 78, 27-46. https://doi.org/10.1016/j.engfracmech.2010.09.006.
- Rahman, S. and Chen, G. (2005), "Continuum shape sensitivity and reliability analyses of nonlinear cracked structures", Int. J. Fract., 131, 189-209. https://doi.org/10.1007/s10704-004-3948-6.
- Rahman, S. and Rao, B.N. (2001a), "A perturbation method for stochastic meshless analysis in elastostatics", Int. J. Numer. Method. Eng., 50, 1969-1991. https://doi.org/10.1002/nme.106.
- Rahman, S. and Rao, B.N. (2001b), "An element-free Galerkin method for probabilistic mechanics and reliability", Int. J. Solids Struct., 38, 9313-9330. https://doi.org/10.1016/S0020-7683(01)00193-7.
- Rao, B.N. and Rahman, S. (2003), "An interaction integral method for analysis of cracks in orthotropic functionally graded materials", 32, 40-51. https://doi.org/10.1007/s00466-003-0460-1.
- Reddy, R.M. and Rao, B.N. (2008), "Stochastic fracture mechanics by fractal finite element method", Comput. Method. Appl. Mech. Eng., 198, 459-474. https://doi.org/10.1016/j.cma.2008.08.014.
- Rhee, H.C. and Salama, M.M. (1987), "Mixed-mode stress intensity factor solutions of a warped surface flaw by three-dimensional finite element analysis", Eng. Fract. Mech., 28, 203-209. https://doi.org/10.1016/0013-7944(87)90214-1.
- Rizov, V.I. (2021), "Viscoelastic inhomogeneous beam under time-dependent strains: A longitudinal crack analysis", Adv. Comput. Des., 6(2), pp.153-168. https://doi.org/10.12989/acd.2021.6.2.153.
- Soni, A., Sahin, K. and Navin, K. (2020), "Effect of parametric uncertainties on fracture behavior of cortical bone using XIGA", Eng. Fract. Mech., 233, 107079. https://doi.org/10.1016/j.engfracmech.2020.107079.
- Stefanou, G. (2009), "The stochastic finite element method: Past, present and future", Comput. Method. Appl. Mech. Eng., 198, 1031-1051. https://doi.org/10.1016/j.cma.2008.11.007.
- Tanaka, K. (1974), "Fatigue crack propagation from a crack inclined to the cyclic tensile axis", Eng. Fract. Mech., 6, 493-507. https://doi.org/10.1016/0013-7944(74)90007-1.
- Tian, R., Wen, L. and Wang, L. (2019), "Three-dimensional improved XFEM (IXFEM) for static crack problems", Comput. Method. Appl. Mech. Eng., 343, 339-367. https://doi.org/10.1016/j.cma.2018.08.029.
- Venanzio, G. (2020), "On the statistical nature of fatigue crack-growth through Monte Carlo simulations and experimental data", IOP Conf. Ser. Mat. Sci. Eng., 1214(1), 012020. https://doi.org/10.1088/1757-899x/1214/1/012020.
- Ventura, G., Budyn, E. and Belytschko, T. (2003), "Vector level sets for description of propagating cracks in finite elements", Int. J. Numer. Method. Eng., 58, 1571-1592. https://doi.org/10.1002/nme.829.
- Wang, L., Liang, J., Yang, Y.W. and Zheng, Y. (2018), "Time-dependent reliability assessment of fatigue crack growth modeling based on perturbation series expansions and interval mathematics", Theor. Appl. Fract. Mech., 95, 104-118. https://doi.org/10.1016/j.tafmec.2018.02.010.
- Wei, D. and Rahman, S. (2007), "Structural reliability analysis by univariate decomposition and numerical integration", Probab. Eng. Mech., 22(1), 27-38. https://doi.org/10.1016/j.probengmech.2006.05.004.
- Xu, H. and Rahman, S. (2005), "Decomposition methods for structural reliability analysis", Probab. Eng. Mech., 20, 239-250. https://doi.org/10.1016/j.probengmech.2005.05.005.
- Zhao, J., Xie, L., Liu, J. and Zhao, Q. (2012), "A method for stress intensity factor calculation of infinite plate containing multiple hole-edge cracks", Int. J. Fatig., 35, 2-9. https://doi.org/10.1016/j.ijfatigue.2011.06.001.
- Zhao, M., Gu, W. and Warner, D.H. (2022), "Atomic mechanism of near threshold fatigue crack growth in vacuum", Nat. Commun., 13, 812. https://doi.org/10.1038/s41467-022-28481-8.
- Zhou, X.Y., Gosling, P.D., Pearce, C.J., Ullah, Z. and Kaczmarczyk, L. (2016), "Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites", Int. J. Solid. Struct., 80, 368-380. https://doi.org/10.1016/j.ijsolstr.2015.09.008.
- Zhu, S.P., Foletti, S. and Beretta S. (2017), "Probabilistic framework for multiaxial LCF assessment under material variability", Int. J. Fatig., 103, 371-385. https://doi.org/10.1016/j.ijfatigue.2017.06.019.
- Zhu, S.P., Liu, Q., Peng, W. and Zhang, X.C. (2018), "Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks", Int. J. Mech. Sci., 142-143, 502-517. https://doi.org/10.1016/j.ijmecsci.2018.04.050.
- Zhuang, Z., Liu, Z., Cheng, B. and Liao, J. (2014), The Extended Finite Element Method, 1st Edition, Tsinghua University Press, Beijing, China.