• Title/Summary/Keyword: stochastic

Search Result 3,509, Processing Time 0.031 seconds

A Novel Concept on Stochastic Stability

  • Bong, Seo-Young;Park, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.95.1-95
    • /
    • 2001
  • This paper is concerned with a novel S-stability (stochastic-stability) concept in linear time-invariant stochastic systems, where a stochastic mode in dynamics depends on both the external disturbance and the inner-parameter variations. This leads to an EAG (eigenstructure assignment gaussian) problem; that is, the problem of associating S-eigenvalues (stochastic-eigenvalues), S-eigenvectors (stochastic-eigenvectors), and their PDFs (probability density functions) with the stochastic information of the systems with the required stochastic specifications. These results explicitly characterize how S-eigenvalues, S-eigenvectors and their PDFs in the complex plane may impose S-stability on stochastic systems.

  • PDF

STOCHASTIC CALCULUS FOR BANACH SPACE VALUED REGULAR STOCHASTIC PROCESSES

  • Choi, Byoung Jin;Choi, Jin Pil;Ji, Un Cig
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.45-57
    • /
    • 2011
  • We study the stochastic integral of an operator valued process against with a Banach space valued regular process. We establish the existence and uniqueness of solution of the stochastic differential equation for a Banach space valued regular process under the certain conditions. As an application of it, we study a noncommutative stochastic differential equation.

BACKWARD SELF-SIMILAR STOCHASTIC PROCESSES IN STOCHASTIC DIFFERENTIAL EQUATIONS

  • Oh, Jae-Pill
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.259-279
    • /
    • 1998
  • For the forward-backward semimartingale, we can define the backward semimartingale flow which is generated by the backward canonical stochastic differential equation. Therefore, we define the backward self-similar stochastic processes, and we study the backward self-similar stochastic flows through the canonical stochastic differential equations.

  • PDF

Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation

  • Galal, O.H.;El-Tahan, W.;El-Tawil, M.A.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.281-294
    • /
    • 2008
  • In this paper, linear elastic isotropic structures under the effects of both stochastic operators and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random excitation and the random operator fields are assumed to be second order stochastic processes. The formulations are obtained for the system solution of the two dimensional problems of plane strain and plate bending structures under stochastic loading and relevant rigidity using the previously mentioned expansions. Two finite element programs were developed to incorporate such formulations. Two illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two statistical moments of displacement are evaluated using both expansions. The probability density function of the structure response of each problem is obtained using Homogeneous Chaos expansion.

Stochastic optimal control of coupled structures

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.669-683
    • /
    • 2003
  • The stochastic optimal nonlinear control of coupled adjacent building structures is studied based on the stochastic dynamical programming principle and the stochastic averaging method. The coupled structures with control devices under random seismic excitation are first condensed to form a reduced-order structural model for the control analysis. The stochastic averaging method is applied to the reduced model to yield stochastic differential equations for structural modal energies as controlled diffusion processes. Then a dynamical programming equation for the energy processes is established based on the stochastic dynamical programming principle, and solved to determine the optimal nonlinear control law. The seismic response mitigation of the coupled structures is achieved through the structural energy control and the dimension of the optimal control problem is reduced. The seismic excitation spectrum is taken into account according to the stochastic dynamical programming principle. Finally, the nonlinear controlled structural response is predicted by using the stochastic averaging method and compared with the uncontrolled structural response to evaluate the control efficacy. Numerical results are given to demonstrate the response mitigation capabilities of the proposed stochastic optimal control method for coupled adjacent building structures.

Performance Evaluation of Vehicle Routing Algorithms in a Stochastic Environment (Stochastic 환경에서 확정적 차량경로결정 해법들의 성능평가)

  • 박양병
    • Korean Management Science Review
    • /
    • v.17 no.2
    • /
    • pp.175-187
    • /
    • 2000
  • The stochastic vehicle routing problem (VRP) is a problem of growing importance since it includes a reality that the deterministic VRP does not have. The stochastic VRP arises whenever some elements of the problem are random. Common examples are stochastic service quantities and stochastic travel times. The solution methodologies for the stochastic VRP are very intricate and regarded as computationally intractable. Even heuristics are hard to develope and implement. On possible way of solving it is to apply a solution for the deterministic VRP. This paper presents a performance evaluation of four simple heuristic for the deterministic VRP is a stochastic environment. The heuristics are modified to consider the time window constraints. The computational results show that some of them perform very well in different cases of the stochastic VRP.

  • PDF

A Study on the Analysis of Stochastic Nonlinear Dynamic System (확률적 비선형 동적계의 해석에 관한 연구)

  • 남성현;김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.697-704
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents the stochastic model of a nonlinear dynamic system with uncertain parameters under nonstationary stochastic inputs. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method and the second moment equation is numerically evaluated by stochastic process closure method, 4th cumulant neglect closure method and Runge-Kutta method. But the first and the second moment equations are coupled each other, so this equations are approximately evaluated by a iterative method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

A Study on a Stochastic Nonlinear System Control Using Neural Networks (신경회로망을 사용한 비선형 확률시스템 제어에 관한 연구)

  • Seok, Jin-Wuk;Choi, Kyung-Sam;Cho, Seong-Won;Lee, Jong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.263-272
    • /
    • 2000
  • In this paper we give some geometric condition for a stochastic nonlinear system and we propose a control method for a stochastic nonlinear system using neural networks. Since a competitive learning neural networks has been developed based on the stochastcic approximation method it is regarded as a stochastic recursive filter algorithm. In addition we provide a filtering and control condition for a stochastic nonlinear system called the perfect filtering condition in a viewpoint of stochastic geometry. The stochastic nonlinear system satisfying the perfect filtering condition is decoupled with a deterministic part and purely semi martingale part. Hence the above system can be controlled by conventional control laws and various intelligent control laws. Computer simulation shows that the stochastic nonlinear system satisfying the perfect filtering condition is controllable and the proposed neural controller is more efficient than the conventional LQG controller and the canonical LQ-Neural controller.

  • PDF

Stochastic convexity in markov additive processes (마코프 누적 프로세스에서의 확률적 콘벡스성)

  • 윤복식
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.147-159
    • /
    • 1991
  • Stochastic convexity(concvity) of a stochastic process is a very useful concept for various stochastic optimization problems. In this study we first establish stochastic convexity of a certain class of Markov additive processes through the probabilistic construction based on the sample path approach. A Markov additive process is obtained by integrating a functional of the underlying Markov process with respect to time, and its stochastic convexity can be utilized to provide efficient methods for optimal design or for optimal operation schedule of a wide range of stochastic systems. We also clarify the conditions for stochatic monotonicity of the Markov process, which is required for stochatic convexity of the Markov additive process. This result shows that stochastic convexity can be used for the analysis of probabilistic models based on birth and death processes, which have very wide application area. Finally we demonstrate the validity and usefulness of the theoretical results by developing efficient methods for the optimal replacement scheduling based on the stochastic convexity property.

  • PDF

OPTIMAL PORTFOLIO SELECTION UNDER STOCHASTIC VOLATILITY AND STOCHASTIC INTEREST RATES

  • KIM, MI-HYUN;KIM, JEONG-HOON;YOON, JI-HUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.417-428
    • /
    • 2015
  • Although, in general, the random fluctuation of interest rates gives a limited impact on portfolio optimization, their stochastic nature may exert a significant influence on the process of selecting the proportions of various assets to be held in a given portfolio when the stochastic volatility of risky assets is considered. The stochastic volatility covers a variety of known models to fit in with diverse economic environments. In this paper, an optimal strategy for portfolio selection as well as the smoothness properties of the relevant value function are studied with the dynamic programming method under a market model of both stochastic volatility and stochastic interest rates.