DOI QR코드

DOI QR Code

In Vivo Effects of Crataegus pinnatifida Extract for Healthy Longevity

  • In-sun Yu (Division of Food Functionality Research, Korea Food Research Institute) ;
  • Mina K. Kim (Department of Food Science and Human Nutrition and K-Food Research Center, Jeonbuk National University) ;
  • Min Jung Kim (Division of Food Functionality Research, Korea Food Research Institute) ;
  • Jaewon Shim (Department of Biochemistry, Kosin University College of Medicine)
  • Received : 2023.02.16
  • Accepted : 2023.03.07
  • Published : 2023.05.28

Abstract

Aging is a complex series of multi-organ processes that occur in various organisms. As such, an in vivo study using an animal model of aging is necessary to define its exact mechanisms and identify anti-aging substances. Using Drosophila as an in vivo model system, we identified Crataegus pinnatifida extract (CPE) as a novel anti-aging substance. Regardless of sex, Drosophila treated with CPE showed a significantly increased lifespan compared to those without CPE. In this study, we also evaluated the involvement of CPE in aging-related biochemical pathways, including TOR, stem cell generation, and antioxidative effects, and found that the representative genes of each pathway were induced by CPE administration. CPE administration did not result in significant differences in fecundity, locomotion, feeding amount, or TAG level. These conclusions suggest that CPE is a good candidate as an anti-aging food substance capable of promoting a healthy lifespan.

Keywords

Acknowledgement

This work was supported by a grant to JS from Kosin University College of Medicine (2021) and from the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology (NRF-2017R1C1B2006455 and NRF-2022R1F1A1076324).

References

  1. Linford NJ, Bilgir C, Ro J, Pletcher SD. 2013. Measurement of lifespan in Drosophila melanogaster. J. Vis. Exp. 71: 50068.
  2. Nouhaud P, Mallard F, Poupardin R, Barghi N, Schlotterer C. 2018. High-throughput fecundity measurements in Drosophila. Sci. Rep. 8: 4469.
  3. Kong Y, Liang X, Liu L, Zhang D, Wan C, Gan Z, et al. 2015. High throughput sequencing identifies MicroRNAs mediating α-synuclein toxicity by targeting neuroactive-ligand receptor interaction pathway in early stage of Drosophila parkinson's disease model. PLoS One 10: e0137432.
  4. Novoseltsev VN, Arking R, Carey JR, Novoseltseva JA, Yashin AI. 2005. Individual fecundity and senescence in Drosophila and medfly. J. Gerontol. Series A 60: 953-962. https://doi.org/10.1093/gerona/60.8.953
  5. Peng C, Chan HY, Huang Y, Yu H, Chen ZY. 2011. Apple polyphenols extend the mean lifespan of Drosophila melanogaster. J. Agric. Food Chem. 59: 2097-2106. https://doi.org/10.1021/jf1046267
  6. Wang CT, Chen YC, Wang YY, Huang MH, Yen TL, Li H, et al. 2012. Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell 11: 93-103. https://doi.org/10.1111/j.1474-9726.2011.00762.x
  7. Palanker L, Tennessen JM, Lam G, Thummel CS. 2009. Drosophila HNF4 regulates lipid mobilization and β-oxidation. Cell Metab. 9: 228-239. https://doi.org/10.1016/j.cmet.2009.01.009
  8. Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY, Chan HYE, et al. 2012. Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp. Gerontol. 47: 170-178. https://doi.org/10.1016/j.exger.2011.12.001
  9. Peng C, Chan HYE, Li YM, Huang Y, Chen ZY. 2009. Black tea theaflavins extend the lifespan of fruit flies. Exp. Gerontol. 44: 773-783. https://doi.org/10.1016/j.exger.2009.09.004
  10. Boyd O, Weng P, Sun X, Alberico T, Laslo M, Obenland DM, et al. 2011. Nectarine promotes longevity in Drosophila melanogaster. Free Radic. Biol. Med. 50: 1669-1678. https://doi.org/10.1016/j.freeradbiomed.2011.03.011
  11. Kane AE, Sinclair DA, Mitchell JR, Mitchell SJ. 2018. Sex differences in the response to dietary restriction in rodents. Curr. Opin. Physiol. 6: 28-34. https://doi.org/10.1016/j.cophys.2018.03.008
  12. Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. 2008. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophag 4: 176-184. https://doi.org/10.4161/auto.5269
  13. Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, et al. 2013. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4: 2300.
  14. Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, et al. 2014. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13: 468-477. https://doi.org/10.1111/acel.12194
  15. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, et al. 2010. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11: 35-46. https://doi.org/10.1016/j.cmet.2009.11.010
  16. Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, et al. 2009. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139: 149-160. https://doi.org/10.1016/j.cell.2009.07.034
  17. Koch U, Lehal R, Radtke F. 2013. Stem cells living with a Notch. Development 140: 689-704. https://doi.org/10.1242/dev.080614
  18. Garton M, Laughton C. 2013. A comprehensive model for the recognition of human telomeres by TRF1. J. Mol. Biol. 425: 2910-2921. https://doi.org/10.1016/j.jmb.2013.05.005
  19. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The Hallmarks of aging. Cell 153: 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
  20. Toshniwal AG, Gupta S, Mandal L, Mandal S. 2019. ROS inhibits cell growth by regulating 4EBP and S6K, independent of TOR, during development. Deve. Cell 49: 473-489. e479. https://doi.org/10.1016/j.devcel.2019.04.008
  21. Hait WN, Jin S, Yang J-M. 2006. A matter of life or death (or both): understanding autophagy in cancer. Clin.Cancer Res. 12: 1961-1965. https://doi.org/10.1158/1078-0432.CCR-06-0011
  22. unlu ES, Koc A. 2007. Effects of deleting mitochondrial antioxidant genes on life span. Ann. NY Acad. Sci. 1100: 505-509. https://doi.org/10.1196/annals.1395.055
  23. Wang L, Li YM, Lei L, Liu Y, Wang X, Ma KY, et al. 2015. Cranberry anthocyanin extract prolongs lifespan of fruit flies. Exp. Gerontol. 69: 189-195. https://doi.org/10.1016/j.exger.2015.06.021
  24. Kapturczak MH, Wasserfall C, Brusko T, Campbell-Thompson M, Ellis TM, Atkinson MA, et al. 2004. Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am. J. Pathol. 165: 1045-1053. https://doi.org/10.1016/S0002-9440(10)63365-2
  25. Abraham NG, Junge JM, Drummond GS. 2016. Translational significance of heme oxygenase in obesity and metabolic syndrome. Trends Pharmacol. Sci. 37: 17-36. https://doi.org/10.1016/j.tips.2015.09.003
  26. Lu J, Holmgren A. 2014. The thioredoxin antioxidant system. Free Rad. Biol. Med. 66: 75-87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036
  27. Nordberg J, Arner ES. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Rad. Biol. Med. 31: 1287-1312. https://doi.org/10.1016/S0891-5849(01)00724-9
  28. Umeda-Kameyama Y, Tsuda M, Ohkura C, Matsuo T, Namba Y, Ohuchi Y, et al. 2007. Thioredoxin suppresses Parkin-associated endothelin receptor-like receptor-induced neurotoxicity and extends longevity in Drosophila. J. Biol. Chem. 282: 11180-11187. https://doi.org/10.1074/jbc.M700937200
  29. Oberacker T, Bajorat J, Ziola S, Schroeder A, Roth D, Kastl L, et al. 2018. Enhanced expression of thioredoxin-interacting-protein regulates oxidative DNA damage and aging. FEBS Lett. 592: 2297-2307. https://doi.org/10.1002/1873-3468.13156
  30. Li YM, Chan HYE, Huang Y, Chen ZY. 2008. Broccoli (Brassica oleracea var. botrytis L.) improves the survival and up-regulates endogenous antioxidant enzymes in Drosophila melanogaster challenged with reactive oxygen species. J. Sci. Food Agric. 88: 499-506. https://doi.org/10.1002/jsfa.3113
  31. Grandison RC, Piper MD, Partridge L. 2009. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462: 1061.
  32. Bross TG, Rogina B, Helfand SL. 2005. Behavioral, physical, and demographic changes in Drosophila populations through dietary restriction. Aging Cell 4: 309-317. https://doi.org/10.1111/j.1474-9726.2005.00181.x
  33. Partridge L, Gems D, Withers DJ. 2005. Sex and death: what is the connection? Cell 120: 461-472. https://doi.org/10.1016/j.cell.2005.01.026
  34. Kapahi P, Kaeberlein M, Hansen M. 2017. Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res. Rev. 39: 3-14. https://doi.org/10.1016/j.arr.2016.12.005
  35. Bansal A, Zhu LJ, Yen K, Tissenbaum HA. 2015. Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc. Natl. Acad. Sci. USA 112: E277-E286. https://doi.org/10.1073/pnas.1412192112