DOI QR코드

DOI QR Code

Unraveling Biohydrogen Production and Sugar Utilization Systems in the Electricigen Shewanella marisflavi BBL25

  • Sang Hyun Kim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Hyun Joong Kim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Su Hyun Kim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Hee Ju Jung (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Byungchan Kim (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Do-Hyun Cho (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Jong-Min Jeon (Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH)) ;
  • Jeong-Jun Yoon (Green and Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH)) ;
  • Sang-Hyoun Kim (School of Civil and Environmental Engineering, Yonsei University) ;
  • Jeong-Hoon Park (Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Shashi Kant Bhatia (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Yung-Hun Yang (Department of Biological Engineering, College of Engineering, Konkuk University)
  • Received : 2022.12.12
  • Accepted : 2023.02.02
  • Published : 2023.05.28

Abstract

Identification of novel, electricity-producing bacteria has garnered remarkable interest because of the various applications of electricigens in microbial fuel cell and bioelectrochemical systems. Shewanella marisflavi BBL25, an electricity-generating microorganism, uses various carbon sources and shows broader sugar utilization than the better-known S. oneidensis MR-1. To determine the sugar-utilizing genes and electricity production and transfer system in S. marisflavi BBL25, we performed an in-depth analysis using whole-genome sequencing. We identified various genes associated with carbon source utilization and the electron transfer system, similar to those of S. oneidensis MR-1. In addition, we identified genes related to hydrogen production systems in S. marisflavi BBL25, which were different from those in S. oneidensis MR-1. When we cultured S. marisflavi BBL25 under anaerobic conditions, the strain produced 427.58 ± 5.85 µl of biohydrogen from pyruvate and 877.43 ± 28.53 µl from xylose. As S. oneidensis MR-1 could not utilize glucose well, we introduced the glk gene from S. marisflavi BBL25 into S. oneidensis MR-1, resulting in a 117.35% increase in growth and a 17.64% increase in glucose consumption. The results of S. marisflavi BBL25 genome sequencing aided in the understanding of sugar utilization, electron transfer systems, and hydrogen production systems in other Shewanella species.

Keywords

Acknowledgement

This study was supported by the Research Program to solve social issues with the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT [Grant No. 2017M3A9E4077234], National Research Foundation of Korea (NRF) [Grant Nos. NRF-2022M3I3A1082545, NRF-2022R1A2C2003138 and NRF-2019M3E6A1103979]. This study was also supported by the R&D Program of MOTIE/KEIT [Grant No. 20016324]. The authors also acknowledge the KU Research Professor Program of Konkuk University, Seoul, South Korea.

References

  1. Long H, Li X, Wang H, Jia J. 2013. Biomass resources and their bioenergy potential estimation: A review. Renew. Sustain. Energy Rev. 26: 344-352. https://doi.org/10.1016/j.rser.2013.05.035
  2. Twas. 2008. Sustainable energy for developing countries. SAPI EN. S. Surv. Perspect. Integr. Environ. Soc. 2.1: 1-48.
  3. Khan S, Hanjra MA. 2009. Footprints of water and energy inputs in food production - Global perspectives. Food Policy 34: 130-140. https://doi.org/10.1016/j.foodpol.2008.09.001
  4. Feng Q, Xu L, Liu C, Wang H, Jiang Z, Xie Z, et al. 2020. Treatment of shale gas fracturing wastewater using microbial fuel cells: mixture of aging landfill leachate and traditional aerobic sludge as catholyte. J. Clean. Prod. 269.
  5. Rabaey K, Verstraete W. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23: 291-298. https://doi.org/10.1016/j.tibtech.2005.04.008
  6. Cao Y, Mu H, Liu W, Zhang R, Guo J, Xian M, et al. 2019. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb. Cell Fact. 18: 39.
  7. Doyle LE, Marsili E. 2018. Weak electricigens: a new avenue for bioelectrochemical research. Bioresour. Technol. 258: 354-364. https://doi.org/10.1016/j.biortech.2018.02.073
  8. Fan L, Xue S. 2016. Overview on electricigens for microbial fuel cell. Open Biotechnol. J. 10: 398Biote
  9. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K. 2010. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101: 1533-1543. https://doi.org/10.1016/j.biortech.2009.10.017
  10. Gurav R, Bhatia SK, Choi TR, Kim HJ, Song HS, Park SL, et al. 2020. Utilization of different lignocellulosic hydrolysates as carbon source for electricity generation using novel Shewanella marisflavi BBL25. J. Clean. Prod. 277: 124084.
  11. Rashid T, Sher F, Hazafa A, Hashmi RQ, Zafar A, Rasheed T, et al. 2021. Design and feasibility study of novel paraboloid graphite based microbial fuel cell for bioelectrogenesis and pharmaceutical wastewater treatment. J. Environ. Chem. Eng. 9: 104502.
  12. Liang P, Duan R, Jiang Y, Zhang X, Qiu Y, Huang X. 2018. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res. 141: 1-8. https://doi.org/10.1016/j.watres.2018.04.066
  13. Kane AL, Brutinel ED, Joo H, Maysonet R, VanDrisse CM, Kotloski NJ, et al. 2016. Formate metabolism in Shewanella oneidensis generates proton motive force and prevents growth without an electron acceptor. J. Bacteriol. 198: 1337-1346. https://doi.org/10.1128/JB.00927-15
  14. Pinchuk GE, Geydebrekht O V, Hill EA, Reed JL, Konopka AE, Beliaev AS, et al. 2011. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl. Environ. Microbiol. 77: 8234-8240. https://doi.org/10.1128/AEM.05382-11
  15. Sinha P, Pandey A. 2014. Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03. Int. J. Hydrog. Energy 39: 7518-7525. https://doi.org/10.1016/j.ijhydene.2013.08.134
  16. Asadi N, Zilouei H. 2017. Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresour. Technol. 227: 335-344. https://doi.org/10.1016/j.biortech.2016.12.073
  17. Hung CH, Chang YT, Chang YJ. 2011. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems - A review. Bioresour. Technol. 102: 8437-8444. https://doi.org/10.1016/j.biortech.2011.02.084
  18. Xiong J, Chan D, Guo X, Chang F, Chen M, Wang Q, et al. 2020. Hydrogen production driven by formate oxidation in Shewanella oneidensis MR-1. Appl. Microbiol. Biotechnol. 104: 5579-5591. https://doi.org/10.1007/s00253-020-10608-w
  19. Meshulam-Simon G, Behrens S, Choo AD, Spormann AM. 2007. Hydrogen metabolism in Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 73: 1153-1165. https://doi.org/10.1128/AEM.01588-06
  20. Yang C, Rodionov DA, Li X, Laikova ON, Gelfand MS, Zagnitko OP, et al. 2006. Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J. Biol. Chem. 281: 29872-29885. https://doi.org/10.1074/jbc.M605052200
  21. Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA. 2010. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J. Bacteriol. 192: 3345-3351. https://doi.org/10.1128/JB.00090-10
  22. Lee SM, Lee HJ, Kim SH, Suh MJ, Cho JY, Ham S, et al. 2021. Engineering of Shewanella marisflavi BBL25 for biomass-based polyhydroxybutyrate production and evaluation of its performance in electricity production. Int. J. Biol. Macromol. 183: 1669-1675. https://doi.org/10.1016/j.ijbiomac.2021.05.105
  23. Gurav R, Bhatia SK, Choi TR, Choi YK, Kim HJ, Song HS, et al. 2021. Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye. Chemosphere 264: 128539.
  24. Park YL, Song HS, Choi TR, Lee SM, Park SL, Lee HS, et al. 2021. Revealing of sugar utilization systems in Halomonas sp. YLGW01 and application for poly(3-hydroxybutyrate) production with low-cost medium and easy recovery. Int. J. Biol. Macromol. 167: 151-159. https://doi.org/10.1016/j.ijbiomac.2020.11.163
  25. Park SL, Cho JY, Kim SH, Lee H-J, Kim SH, Suh MJ, et al. 2022. Novel Polyhydroxybutyrate-degrading activity of the Microbulbifer genus as confirmed by Microbulbifer sp. SOL03 from the marine environment . J. Microbiol. Biotechnol. 32: 27-36. https://doi.org/10.4014/jmb.2109.09005
  26. Son YS, Jeon JM, Kim DH, Yang YH, Jin YS, Cho BK, et al. 2021. Improved bio-hydrogen production by overexpression of glucose-6-phosphate dehydrogenase and FeFe hydrogenase in Clostridium acetobutylicum. Int. J. Hydrogen Energy 46: 36687-36695. https://doi.org/10.1016/j.ijhydene.2021.08.222
  27. Lee HS, Song HS, Lee HJ, Kim SH, Suh MJ, Cho JY, et al. 2021. Comparative study of the difference in behavior of the accessory gene regulator (agr) in USA300 and USA400 community-associated methicillin-resistant staphylococcus aureus (CA-MRSA). J. Microbiol. Biotechnol. 31: 1060-1068. https://doi.org/10.4014/jmb.2104.04032
  28. Jeon JM, Park H, Seo HM, Kim JH, Bhatia SK, Sathiyanarayanan G, et al. 2015. Isobutanol production from an engineered Shewanella oneidensis MR-1. Bioprocess Biosyst. Eng. 38: 2147-2154. https://doi.org/10.1007/s00449-015-1454-z
  29. Cho JY, Lee Park S, Lee HJ, Kim SH, Suh MJ, Ham S, et al. 2021. Polyhydroxyalkanoates (PHAs) degradation by the newly isolated marine Bacillus sp. JY14. Chemosphere 283: 131172.
  30. Park YL, Bhatia SK, Gurav R, Choi TR, Kim HJ, Song HS, et al. 2020. Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. Int. J. Biol. Macromol. 154: 929-936. https://doi.org/10.1016/j.ijbiomac.2020.03.129
  31. Song HS, Seo HM, Jeon JM, Moon YM, Hong JW, Hong YG, et al. 2018. Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl-CoA synthetase and anaplerotic enzymes in engineered Escherichia coli. Biotechnol. Bioeng. 115: 1971-1978. https://doi.org/10.1002/bit.26710
  32. Gurav R, Bhatia SK, Choi TR, Kim HJ, Song HS, Park SL, et al. 2020. Utilization of different lignocellulosic hydrolysates as carbon source for electricity generation using novel Shewanella marisflavi BBL25. J. Clean. Prod. 277.
  33. Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, et al. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20: 1118-1123. https://doi.org/10.1038/nbt749
  34. Xiao X, Wang P, Zeng X, Bartlett DH, Wang F. 2007. Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int. J. Syst. Evol. Microbiol. 57: 60-65. https://doi.org/10.1099/ijs.0.64500-0
  35. Zhang WJ, Cui XH, Chen LH, Yang J, Li XG, Zhang C, et al. 2019. Complete genome sequence of Shewanella benthica DB21MT-2, an obligate piezophilic bacterium isolated from the deepest Mariana Trench sediment. Mar. Genomics 44: 52-56. https://doi.org/10.1016/j.margen.2018.09.001
  36. Huang YT, Tang YY, Cheng JF, Wu ZY, Mao YC, Liu PY. 2018. Genome analysis of multidrug-resistant Shewanella algae isolated from human soft tissue sample. Front. Pharmacol. 9: 419.
  37. Wang F, Wang J, Jian H, Zhang B, Li S, Wang F, et al. 2008. Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-see iron reducing bacterium Shewanella piezotolerans WP3. PLoS One 3: e1937.
  38. Piyanuch. 2019. Complete genome sequence of Shewanella sp. strain TH2012, isolated from shrimp in a cultivation pond exhibiting early mortality syndrome. Microbiol. Resour. Announc. 8: e01703-18.
  39. Chang RH, Feng DD, Peng LH, Zhu YT, Liang X, Yang JL. 2021. Complete genome sequence of Shewanellamarisflavi ECSMB14101, a red pigment synthesizing bacterium isolated from the East China Sea. Mar. Genomics 58: 100846.
  40. Li C, Zhang B, Wang X, Pi X, Wang X, Zhou H, et al. 2019. Improved utilization of soybean meal through fermentation with commensal Shewanella sp. MR-7 in turbot (Scophthalmus maximus L.). Microb. Cell Fact. 18: 214.
  41. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, et al. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 103: 11358-11363. https://doi.org/10.1073/pnas.0604517103
  42. Coursolle D, Baron DB, Bond DR, Gralnick JA. 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol. 192: 467-474. https://doi.org/10.1128/JB.00925-09
  43. Coursolle D, Gralnick JA. 2012. Reconstruction of extracellular respiratory pathways for iron(III) reduction in Shewanella oneidensis strain MR-1. Front. Microbiol. 3: 56.
  44. Author N, Jormakka M, Tornroth S, Byrne B, Iwata S. 2002. Molecular basis of proton motive force generation: structure of formate dehydrogenase. Science 295: 1863-1868. https://doi.org/10.1126/science.1068186
  45. Li J, Yu H, Yang X, Dong R, Liu Z, Zeng M. 2020. Complete genome sequence provides insights into the quorum sensing-related spoilage potential of Shewanella baltica 128 isolated from spoiled shrimp. Genomics 112: 736-748. https://doi.org/10.1016/j.ygeno.2019.05.010
  46. Hau HH, Gralnick JA. 2007. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61: 237-258. https://doi.org/10.1146/annurev.micro.61.080706.093257
  47. Liu H, Hu H, Chignell J, Fan Y. 2010. Microbial electrolysis: novel technology for hydrogen production from biomass. Biofuels 1: 129-142. https://doi.org/10.4155/bfs.09.9
  48. Dawood Z, Bro VS. 1998. Corrosion-enhancing potential of Shewanella putrefaciens isolated from industrial cooling waters. J. Appl. Microbiol. 8: 929-936. https://doi.org/10.1046/j.1365-2672.1998.00414.x
  49. Le Meur S, Zinn M, Egli T, Thony-Meyer L, Ren Q. 2012. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. BMC Biotechnol. 12: 53.
  50. Yang C, Rodionov DA, Li X, Laikova ON, Gelfand MS, Zagnitko OP, et al. 2006. Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J. Biol. Chem. 281: 29872. Chem.
  51. Li F, Li Y, Sun L, Li X, Yin C, An X, et al. 2017. Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotechnol. Biofuels 10: 196.
  52. Kouzuma A, Kasai T, Hirose A, Watanabe K. 2015. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Front. Microbiol. 6: 609.
  53. Guo WQ, Ren NQ, Wang XJ, Xiang WS, Ding J, You Y, et al. 2009. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresour. Technol. 100: 1192-1196. https://doi.org/10.1016/j.biortech.2008.07.070
  54. Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, et al. 2021. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci. Total Environ. 765: 144429.