DOI QR코드

DOI QR Code

A Review of the Health Benefits of Kimchi Functional Compounds and Metabolites

  • Hyun Ju Kim (Kimchi Functionality Research Group, World Institute of Kimchi) ;
  • Min Sung Kwon (Kimchi Functionality Research Group, World Institute of Kimchi) ;
  • Hyelyeon Hwang (Kimchi Functionality Research Group, World Institute of Kimchi) ;
  • Ha-Sun Choi (Kimchi Functionality Research Group, World Institute of Kimchi) ;
  • WooJe Lee (Kimchi Functionality Research Group, World Institute of Kimchi) ;
  • Sang-Pil Choi (Kimchi Functionality Research Group, World Institute of Kimchi) ;
  • Haeun Jo (Kimchi Functionality Research Group, World Institute of Kimchi) ;
  • Sung Wook Hong (Kimchi Functionality Research Group, World Institute of Kimchi)
  • Received : 2023.10.16
  • Accepted : 2023.11.03
  • Published : 2023.12.28

Abstract

Kimchi is a traditional Korean dish made with salted fermented vegetables and contains various nutrients and functional substances with potential health benefits. The fermentation process used to make kimchi creates chemical changes in the food, developing nutrients and functional substances that are more easily absorbed and enhanced by the body. Recent studies have shown that several lactic acid bacteria strains isolated from kimchi exhibit probiotic properties and have several health benefiting properties such as such as anticancer, anti-obesity, and anti-constipation; they also promote colon health and cholesterol reduction in in vitro and in vivo experiments, as well as in epidemiological cohort studies. Kimchi contains prebiotics, non-digestible fibers that nourish beneficial gut bacteria; therefore, its intake effectively provides both probiotics and prebiotics for improved gut health and a fortified gut-derived immune system. Furthermore, fermentation of kimchi produces a variety of metabolites that enhance its functionality. These metabolites include organic acids, enzymes, vitamins, bioactive compounds, bacteriocins, exopolysaccharides, and γ-aminobutyric acid. These diverse health-promoting metabolites are not readily obtainable from single food sources, positioning kimchi as a valuable dietary option for acquiring these essential components. In this review, the health functionalities of kimchi ingredients, lactic acid bacteria strains, and health-promoting metabolites from kimchi are discussed for their properties and roles in kimchi fermentation. In conclusion, consuming kimchi can be beneficial for health. We highlight the benefits of kimchi consumption and establish a rationale for including kimchi in a balanced, healthy diet.

Keywords

Acknowledgement

This research was supported by grants from the World Institute of Kimchi (KE2301-2) funded by the Ministry of Science and ICT, Republic of Korea.

References

  1. Cheigh HS, Park KY, Lee C. 1994. Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit. Rev. Food Sci. Nutr. 34: 175-203. 
  2. Lee JJ, Choi YJ, Lee MJ, Park SJ, Oh SJ, Yun YR, et al. 2020. Effects of combining two lactic acid bacteria as a starter culture on model kimchi fermentation. Food Res. Int. 136: 109591. 
  3. Lee G-I, Lee H-M, Lee C-H. 2012. Food safety issues in industrialization of traditional Korean foods. Food Control. 24: 1-5. 
  4. Patra JK, Das G, Paramithiotis S, Shin HS. 2016. Kimchi and other widely consumed traditional fermented foods of Korea: a review. Front. Microbiol. 7: 1493. 
  5. Das G, Heredia JB, de Lourdes Pereira M, Coy-Barrera E, Rodrigues Oliveira SM, Gutierrez-Grijalva EP, et al. 2021. Korean traditional foods as antiviral and respiratory disease prevention and treatments: A detailed review. Trends Food Sci. Technol. 116: 415-433. 
  6. Bousquet J, Cristol JP, Czarlewski W, Anto JM, Martineau A, Haahtela T, et al. 2020. Nrf2-interacting nutrients and COVID19: time for research to develop adaptation strategies. Clin. Transl. Allergy. 10: 58. 
  7. Fahey JW, Zalcmann AT, Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemstry 56: 5-51. 
  8. Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, et al. 1999. Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agric. Food Chem. 47: 1541-1548. 
  9. Esteve M. 2020. Mechanisms underlying biological effects of cruciferous glucosinolate-derived isothiocyanates/indoles: A focus on metabolic syndrome. Front. Nutr. 7: 111. 
  10. Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, et al. 2021. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 76: 735-750. 
  11. Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW. 2017. KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends Food Sci. Technol. 69: 257-269. 
  12. Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, et al. 2019. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18: 295-317. 
  13. Bousquet J, Czarlewski W, Zuberbier T, Mullol J, Blain H, Cristol J-P, et al. 2021. Potential interplay between Nrf2, TRPA1, and TRPV1 in nutrients for the control of COVID-19. Int. Arch. Allergy Immunol. 182: 324-338. 
  14. Bousquet J, Czarlewski W, Zuberbier T, Mullol J, Blain H, Cristol JP, et al. 2021. Spices to control COVID-19 symptoms: Yes, but not only. Int. Arch. Allergy Immunol. 182: 489-495. 
  15. Hwang IM, Jung S, Jeong JY, Kim MJ, Jang HY, Lee JH. 2023. Elemental analysis of kimchi cabbage leaves, roots, and soil and its potential impact on human health. ACS Omega 8: 20892-20899. 
  16. Ho CL, Tan HQ, Chua KJ, Kang A, Lim KH, Ling KL, et al. 2018. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat. Biomed. Eng. 2: 27-37. 
  17. Tomooka F, Kaji K, Nishimura N, Kubo T, Iwai S, Shibamoto A, et al. 2023. Sulforaphane potentiates gemcitabine-mediated anticancer effects against intrahepatic cholangiocarcinoma by inhibiting HDAC activity. Cells 12: 687. 
  18. Traka MH, Melchini A, Coode-Bate J, Al Kadhi O, Saha S, Defernez M, et al. 2019. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention-results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. Am. J. Clin. Nutr. 109: 1133-1144. 
  19. Liu S, Zhang Y, Zheng X, Wang Z, Wang P, Zhang M, et al. 2023. Sulforaphane inhibits foam cell formation and atherosclerosis via mechanisms involving the modulation of macrophage cholesterol transport and the related phenotype. Nutrients 15: 2117. 
  20. Pan J, Wang R, Pei Y, Wang D, Wu N, Ji Y, et al. 2023. Sulforaphane alleviated vascular remodeling in hypoxic pulmonary hypertension via inhibiting inflammation and oxidative stress. J. Nutr. Biochem. 111: 109182. 
  21. Holman J, Hurd M, Moses PL, Mawe GM, Zhang T, Ishaq SL, et al. 2023. Interplay of broccoli/broccoli sprout bioactives with gut microbiota in reducing inflammation in inflammatory bowel diseases. J. Nutr. Biochem. 113: 109238. 
  22. Xu Y, Huang X, Huangfu B, Hu Y, Xu J, Gao R, et al. 2023. Sulforaphane ameliorates nonalcoholic fatty liver disease induced by high-fat and high-fructose diet via LPS/TLR4 in the gut-liver axis. Nutrients 15: 743. 
  23. Hong L, Xu Y, Wang D, Zhang Q, Li X, Xie C, et al. 2023. Sulforaphane ameliorates bisphenol A-induced hepatic lipid accumulation by inhibiting endoplasmic reticulum stress. Sci. Rep. 13: 1147. 
  24. Kikuchi M, Ushida Y, Shiozawa H, Umeda R, Tsuruya K, Aoki Y, et al. 2015. Sulforaphane-rich broccoli sprout extract improves hepatic abnormalities in male subjects. World J. Gastroenterol. 21: 12457-12467. 
  25. Satomi S, Takahashi S, Yoshida K, Shimizu S, Inoue T, Takara T, et al. 2022. Effects of broccoli sprout supplements enriched in glucoraphanin on liver functions in healthy middle-aged adults with high-normal serum hepatic biomarkers: A randomized controlled trial. Front. Nutr. 9: 1077271. 
  26. Powell EE, Wong VW, Rinella M. 2021. Non-alcoholic fatty liver disease. Lancet 397: 2212-2224. 
  27. Graham S, Dayal H, Swanson M, Mittelman A, Wilkinson G. 1978. Diet in the epidemiology of cancer of the colon and rectum. J. Natl. Cancer Inst. 61: 709-714. 
  28. Michaud DS, Spiegelman D, Clinton SK, Rimm EB, Willett WC, Giovannucci EL. 1999. Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. J. Natl. Cancer Inst. 91: 605-613. 
  29. Amarakoon D, Lee WJ, Tamia G, Lee SH. 2023. Indole-3-carbinol: Occurrence, health-beneficial properties, and cellular/molecular mechanisms. Annu. Rev. Food Sci. Technol. 14: 347-366. 
  30. Busbee PB, Menzel L, Alrafas HR, Dopkins N, Becker W, Miranda K, et al. 2020. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22-dependent manner. JCI Insight. 5: e127551. 
  31. Peng C, Wu C, Xu X, Pan L, Lou Z, Zhao Y, et al. 2021. Indole-3- carbinol ameliorates necroptosis and inflammation of intestinal epithelial cells in mice with ulcerative colitis by activating aryl hydrocarbon receptor. Exp. Cell Res. 404: 112638. 
  32. Yang H, Seo SG, Shin SH, Min S, Kang MJ, Yoo R, et al. 2017. 3,3'-Diindolylmethane suppresses high-fat diet-induced obesity through inhibiting adipogenesis of pre-adipocytes by targeting USP2 activity. Mol. Nutr. Food Res. 61: 1700119. 
  33. Chang HP, Wang ML, Chan MH, Chiu YS, Chen YH. 2011. Antiobesity activities of indole-3-carbinol in high-fat-diet-induced obese mice. Nutrition 27: 463-470. 
  34. Choi Y, Kim Y, Park S, Lee KW, Park T. 2012. Indole-3-carbinol prevents diet-induced obesity through modulation of multiple genes related to adipogenesis, thermogenesis or inflammation in the visceral adipose tissue of mice. J. Nutr. Biochem. 23: 1732-1739. 
  35. Munakarmi S, Shrestha J, Shin HB, Lee GH, Jeong YJ. 2021. 3,3'- Diindolylmethane suppresses the growth of hepatocellular carcinoma by regulating its invasion, migration, and ER stress-mediated mitochondrial apoptosis. Cells 10: 1178. 
  36. Wang X, Zhao Y, Yu M, Xu Y. 2020. PTEN/Akt signaling-mediated activation of the mitochondrial pathway contributes to the 3,3'-dindolylmethane-mediated antitumor effect in malignant melanoma cells. J. Med. Food 23: 1248-1258. 
  37. Deng W, Zong J, Bian Z, Zhou H, Yuan Y, Zhang R, et al. 2013. Indole-3-carbinol protects against pressure overload induced cardiac remodeling via activating AMPK-alpha. Mol. Nutr. Food Res. 57: 1680-1687. 
  38. Mandal SK, Rath SK, Logesh R, Mishra SK, Devkota HP, Das N. 2023. Capsicum annuum L. and its bioactive constituents: A critical review of a traditional culinary spice in terms of its modern pharmacological potentials with toxicological issues. Phytother. Res. 37: 965-1002. 
  39. Xu S, Cheng X, Wu L, Zheng J, Wang X, Wu J, et al. 2020. Capsaicin induces mitochondrial dysfunction and apoptosis in anaplastic thyroid carcinoma cells via TRPV1-mediated mitochondrial calcium overload. Cell Signal. 75: 109733. 
  40. Zhai K, Liskova A, Kubatka P, Busselberg D. 2020. Calcium entry through TRPV1: A potential target for the regulation of proliferation and apoptosis in cancerous and healthy cells. Int. J. Mol. Sci. 21: 4177. 
  41. Min JK, Han KY, Kim EC, Kim YM, Lee SW, Kim OH, et al. 2004. Capsaicin inhibits in vitro and in vivo angiogenesis. Cancer Res. 64: 644-651. 
  42. Zhu SL, Wang ML, He YT, Guo SW, Li TT, Peng WJ, et al. 2022. Capsaicin ameliorates intermittent high glucose-mediated endothelial senescence via the TRPV1/SIRT1 pathway. Phytomedicine 100: 154081. 
  43. Dai Z, Li S, Meng Y, Zhao Q, Zhang Y, Suonan Z, et al. 2022. Capsaicin ameliorates high-fat diet-induced atherosclerosis in ApoE(-/-) mice via remodeling gut microbiota. Nutrients 14: 4334. 
  44. Castrejon-Tellez V, Del Valle-Mondragon L, Perez-Torres I, Guarner-Lans V, Pastelin-Hernandez G, Ruiz-Ramirez A, et al. 2022. TRPV1 contributes to modulate the nitric oxide pathway and oxidative stress in the isolated and perfused rat heart during ischemia and reperfusion. Molecules 27: 1031. 
  45. Kelava L, Nemeth D, Hegyi P, Keringer P, Kovacs DK, Balasko M, et al. 2022. Dietary supplementation of transient receptor potential vanilloid-1 channel agonists reduces serum total cholesterol level: a meta-analysis of controlled human trials. Crit. Rev. Food Sci. Nutr. 62: 7025-7035. 
  46. Wang Y, Zhou Y, Fu J. 2021. Advances in antiobesity mechanisms of capsaicin. Curr. Opin. Pharmacol. 61: 1-5. 
  47. Ghosh S, Whitley CS, Haribabu B, Jala VR. 2021. Regulation of intestinal barrier function by microbial metabolites. Cell Mol. Gastroenterol. Hepatol. 11: 1463-1482. 
  48. Agus A, Clement K, Sokol H. 2021. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 70: 1174-1182. 
  49. Lu M, Cao Y, Ho CT, Huang Q. 2017. The enhanced anti-obesity effect and reduced gastric mucosa irritation of capsaicin-loaded nanoemulsions. Food Funct. 8: 1803-1809. 
  50. Han AL, Jeong SJ, Ryu MS, Yang HJ, Jeong DY, Park DS, et al. 2022. Anti-obesity effects of traditional and commercial kochujang in overweight and obese adults: A randomized controlled trial. Nutrients 14: 2783. 
  51. Kang BK, Cho MS, Ahn TY, Lee ES, Park DS. 2015. The influence of red pepper powder on the density of Weissella koreensis during kimchi fermentation. Sci. Rep. 5: 15445. 
  52. Jung S, An H, Lee J-H. 2021. Red pepper powder is an essential factor for ornithine production in kimchi fermentation. LWT 137: 110434. 
  53. Park JA, Tirupathi Pichiah PB, Yu JJ, Oh SH, Daily JW, Cha YS. 2012. Anti-obesity effect of kimchi fermented with Weissella koreensis OK1-6 as starter in high-fat diet-induced obese C57BL/6J mice. J. Appl. Microbiol. 113: 1507-1516. 
  54. Verma T, Aggarwal A, Dey P, Chauhan AK, Rashid S, Chen KT, et al. 2023. Medicinal and therapeutic properties of garlic, garlic essential oil, and garlic-based snack food: An updated review. Front. Nutr. 10: 1120377. 
  55. Iciek M, Kwiecien I, Wlodek L. 2009. Biological properties of garlic and garlic-derived organosulfur compounds. Environ. Mol. Mutagen. 50: 247-265. 
  56. Li WQ, Zhang JY, Ma JL, Li ZX, Zhang L, Zhang Y, et al. 2019. Effects of Helicobacter pylori treatment and vitamin and garlic supplementation on gastric cancer incidence and mortality: follow-up of a randomized intervention trial. BMJ (Clinical research ed.) 366: l5016. 
  57. Wu X, Shi J, Fang WX, Guo XY, Zhang LY, Liu YP, et al. 2019. Allium vegetables are associated with reduced risk of colorectal cancer: A hospital-based matched case-control study in China. Asia Pac. J. Clin. Oncol. 15: e132-e141. 
  58. Schaffer EM, Liu JZ, Green J, Dangler CA, Milner JA. 1996. Garlic and associated allyl sulfur components inhibit N-methyl-N-nitrosourea induced rat mammary carcinogenesis. Cancer Lett. 102: 199-204. 
  59. De Greef D, Barton EM, Sandberg EN, Croley CR, Pumarol J, Wong TL, et al. 2021. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin. Cancer Biol. 73: 219-264. 
  60. Oommen S, Anto RJ, Srinivas G, Karunagaran D. 2004. Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur. J. Pharmacol. 485: 97-103. 
  61. Park SY, Cho SJ, Kwon HC, Lee KR, Rhee DK, Pyo S. 2005. Caspase-independent cell death by allicin in human epithelial carcinoma cells: involvement of PKA. Cancer Lett. 224: 123-132. 
  62. Catanzaro E, Canistro D, Pellicioni V, Vivarelli F, Fimognari C. 2022. Anticancer potential of allicin: A review. Pharmacol. Res. 177: 106118. 
  63. Khatua TN, Borkar RM, Mohammed SA, Dinda AK, Srinivas R, Banerjee SK. 2017. Novel sulfur metabolites of garlic attenuate cardiac hypertrophy and remodeling through induction of Na(+)/K(+)-ATPase expression. Front. Pharmacol. 8: 18. 
  64. Li M, Yun W, Wang G, Li A, Gao J, He Q. 2022. Roles and mechanisms of garlic and its extracts on atherosclerosis: A review. Front. Pharmacol. 13: 954938. 
  65. Hitchcock JK, Mkwanazi N, Barnett C, Graham LM, Katz AA, Hunter R, et al. 2021. The garlic compound Z-Ajoene, S-Thiolates COX2 and STAT3 and dampens the inflammatory response in RAW264.7 macrophages. Mol. Nutr. Food Res. 65: e2000854. 
  66. Ide N, Lau BH. 2001. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-kappa b activation. J. Nutr. 131: 1020S-1026S. 
  67. Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. 2021. Foam cells as therapeutic targets in atherosclerosis with a focus on the regulatory roles of non-coding RNAs. Int. J. Mol. Sci. 22: 2529. 
  68. Kim HJ, Kim M. 2023. Diallyl disulfide alleviates hypercholesterolemia induced by a western diet by suppressing endoplasmic reticulum stress in apolipoprotein E-deficient mice. BMC Complement. Med. Ther. 23: 141. 
  69. Park K-Y, Jeong J-K, Lee Y-E, Daily III JW. 2014. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food. 17: 6-20. 
  70. Wang Y, Wu Y, Fu P, Zhou H, Guo X, Zhu C, et al. 2022. Effect of garlic essential oil in 97 patients hospitalized with covid-19: A multi-center experience. Pak. J. Pharm. Sci. 35: 1077-1082. 
  71. Thota SM, Balan V, Sivaramakrishnan V. 2020. Natural products as home-based prophylactic and symptom management agents in the setting of COVID-19. Phytother. Res. 34: 3148-3167. 
  72. Alolga RN, Wang F, Zhang X, Li J, Tran LP, Yin X. 2022. Bioactive compounds from the Zingiberaceae family with known antioxidant activities for possible therapeutic uses. Antioxidants (Basel) 11: 1281. 
  73. Kiyama R. 2020. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. J. Nutr. Biochem. 86: 108486. 
  74. Unuofin JO, Masuku NP, Paimo OK, Lebelo SL. 2021. Ginger from farmyard to town: nutritional and pharmacological applications. Front. Pharmacol. 12: 779352. 
  75. Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. 2010. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J. Ethnopharmacol. 127: 515-520. 
  76. Hong MK, Hu LL, Zhang YX, Xu YL, Liu XY, He PK, et al. 2020. 6-Gingerol ameliorates sepsis-induced liver injury through the Nrf2 pathway. Int. Immunopharmacol. 80: 106196. 
  77. Sakulnarmrat K, Srzednicki G, Konczak I. 2015. Antioxidant, enzyme inhibitory and antiproliferative activity of polyphenolic-rich fraction of commercial dry ginger powder. Int. J. Food. Sci. Technol. 50: 2229-2235. 
  78. Li Y, Hong Y, Han Y, Wang Y, Xia L. 2016. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1011: 223-232. 
  79. Zhang F, Ma N, Gao YF, Sun LL, Zhang JG. 2017. Therapeutic effects of 6-gingerol, 8-gingerol, and 10-gingerol on dextran sulfate sodium-induced acute ulcerative colitis in rats. Phytother. Res. 31: 1427-1432. 
  80. Kim S, Cheon C, Kim B, Kim W. 2022. The Effect of ginger and its sub-components on pain. Plants (Basel) 11: 2296. 
  81. Li Y, Yang D, Gao X, Ju M, Fang H, Yan Z, et al. 2022. Ginger supplement significantly reduced length of hospital stay in individuals with COVID-19. Nutr. Metab. (Lond) 19: 84. 
  82. Sen D, Debnath P, Debnath B, Bhaumik S, Debnath S. 2022. Identification of potential inhibitors of SARS-CoV-2 main protease and spike receptor from 10 important spices through structure-based virtual screening and molecular dynamic study. J. Biomol. Struct. Dyn. 40: 941-962. 
  83. Oso BJ, Adeoye AO, Olaoye IF. 2022. Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases. J. Biomol. Struct. Dyn. 40: 389-400. 
  84. Almatroodi SA, Alnuqaydan AM, Babiker AY, Almogbel MA, Khan AA, Husain Rahmani A. 2021. 6-Gingerol, a bioactive compound of ginger attenuates renal damage in streptozotocin-induced diabetic rats by regulating the oxidative stress and inflammation. Pharmaceutics 13: 317. 
  85. Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. 2006. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. Br .J. Nutr. 96: 660-666. 
  86. Yu JS, Youn GS, Choi J, Kim CH, Kim BY, Yang SJ, et al. 2021. Lactobacillus lactis and Pediococcus pentosaceus-driven reprogramming of gut microbiome and metabolome ameliorates the progression of non-alcoholic fatty liver disease. Clin. Transl. Med. 11: e634. 
  87. Kim J, Ahn SW, Kim JY, Whon TW, Lim SK, Ryu BH, et al. 2022. Probiotic Lactobacilli ameliorate alcohol-induced hepatic damage via gut microbial alteration. Front. Microbiol. 13: 869250. 
  88. Yoon HS, Ju JH, Kim HN, Park HJ, Ji Y, Lee JE, et al. 2013. Reduction in cholesterol absorption in Caco-2 cells through the down-regulation of Niemann-Pick C1-like 1 by the putative probiotic strains Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 from fermented foods. Int. J. Food Sci. Nutr. 64: 44-52. 
  89. Park SS, Lim SK, Lee J, Park HK, Kwon MS, Yun M, et al. 2021. Latilactobacillus sakei WIKIM31 decelerates weight gain in high-fat diet-induced obese mice by modulating lipid metabolism and suppressing inflammation. J. Microbiol. Biotechnol. 31: 1568-1575. 
  90. Lim SM, Jeong JJ, Woo KH, Han MJ, Kim DH. 2016. Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutr. Res. 36: 337-348. 
  91. Lee J, Jang JY, Kwon MS, Lim SK, Kim N, Lee J, et al. 2018. Mixture of two Lactobacillus plantarum strains modulates the gut microbiota structure and regulatory T cell response in diet-induced obese mice. Mol. Nutr. Food Res. 62: e1800329. 
  92. Park SS, Lee YJ, Kang H, Yang G, Hong EJ, Lim JY, et al. 2019. Lactobacillus amylovorus KU4 ameliorates diet-induced obesity in mice by promoting adipose browning through PPARγ signaling. Sci. Rep. 9: 20152. 
  93. Lim S, Moon JH, Shin CM, Jeong D, Kim B. 2020. Effect of Lactobacillus sakei, a probiotic derived from kimchi, on body fat in Koreans with obesity: A randomized controlled study. Endocrinol. Metab. 35: 425-434. 
  94. Oh MR, Jang HY, Lee SY, Jung SJ, Chae SW, Lee SO, et al. 2021. Lactobacillus plantarum HAC01 supplementation improves glycemic control in prediabetic subjects: A randomized, double-blind, placebo-controlled trial. Nutrients 13: 2337. 
  95. Song MW, Jang HJ, Kim KT, Paik HD. 2019. Probiotic and antioxidant properties of novel Lactobacillus brevis KCCM 12203P isolated from kimchi and evaluation of immune-stimulating activities of its heat-killed cells in RAW 264.7 cells. J. Microbiol. Biotechnol. 29: 1894-1903. 
  96. Jang SE, Joh EH, Lee HY, Ahn YT, Lee JH, Huh CS, et al. 2013. Lactobacillus plantarum HY7712 ameliorates cyclophosphamide-induced immunosuppression in mice. J. Microbiol. Biotechnol. 23: 414-421. 
  97. Lee H, Ahn YT, Park SH, Park DY, Jin YW, Kim CS, et al. 2014. Lactobacillus plantarum HY7712 protects against the impairment of NK-cell activity caused by whole-body γ-irradiation in mice. J. Microbiol. Biotechnol. 24: 127-131. 
  98. Kang H, Choi HS, Kim JE, Han NS. 2011. Exopolysaccharide-overproducing Lactobacillus paracasei KB28 induces cytokines in mouse peritoneal macrophages via modulation of NF-κβ and MAPKs. J. Microbiol. Biotechnol. 21: 1174-1178. 
  99. Sohn H, Chang YH, Yune JH, Jeong CH, Shin DM, Kwon HC, et al. 2020. Probiotic properties of Lactiplantibacillus plantarum LB5 isolated from kimchi based on nitrate reducing capability. Foods (Basel, Switzerland) 9: 1777. 
  100. Yang SY, Chae SA, Bang WY, Lee M, Ban OH, Kim SJ, et al. 2021. Anti-inflammatory potential of Lactiplantibacillus plantarum IDCC 3501 and its safety evaluation. Braz. J. Microbiol. 52: 2299-2306. 
  101. Yun SW, Kim JK, Lee KE, Oh YJ, Choi HJ, Han MJ, et al. 2020. A probiotic Lactobacillus gasseri alleviates Escherichia coli-induced cognitive impairment and depression in mice by regulating IL-1β expression and gut microbiota. Nutrients 12: 3441. 
  102. Yang J, Bae J, Choi CY, Choi SP, Yun HS, Chun T. 2022. Oral administration of Lactiplantibacillus plantarum NR16 isolated from Kimchi ameliorates murine allergic rhinitis. Lett. Appl. Microbiol. 75: 152-160. 
  103. Kim WG, Kang GD, Kim HI, Han MJ, Kim DH. 2019. Bifidobacterium longum IM55 and Lactobacillus plantarum IM76 alleviate allergic rhinitis in mice by restoring Th2/Treg imbalance and gut microbiota disturbance. Benef. Microbes 10: 55-67. 
  104. Kwon MS, Lim SK, Jang JY, Lee J, Park HK, Kim N, et al. 2018. Lactobacillus sakei WIKIM30 ameliorates atopic dermatitis-like skin lesions by inducing regulatory T cells and altering gut microbiota structure in mice. Front. Immunol. 9: 1905. 
  105. Kim JY, Park BK, Park HJ, Park YH, Kim BO, Pyo S. 2013. Atopic dermatitis-mitigating effects of new Lactobacillus strain, Lactobacillus sakei probio 65 isolated from Kimchi. J. Appl. Microbiol. 115: 517-526. 
  106. Jung JH, Kim SJ, Lee JY, Yoon SR, You SY, Kim SH. 2019. Multifunctional properties of Lactobacillus plantarum strains WiKim83 and WiKim87 as a starter culture for fermented food. Food Sci. Nutr. 7: 2505-2516. 
  107. Lee JE, Lee NK, Paik HD. 2021. Antimicrobial and anti-biofilm effects of probiotic Lactobacillus plantarum KU200656 isolated from kimchi. Food Sci. Biotechnol. 30: 97-106. 
  108. Yang EJ, Chang HC. 2010. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int. J. Food Microbiol. 139: 56-63. 
  109. Park S, Kim JI, Bae JY, Yoo K, Kim H, Kim IH, et al. 2018. Effects of heat-killed Lactobacillus plantarum against influenza viruses in mice. J. Microbiol. 56: 145-149. 
  110. Wang X, Li D, Meng Z, Kim K, Oh S. 2022. Latilactobacillus curvatus BYB3 isolated from kimchi alleviates dextran sulfate sodium (DSS)-induced colitis in mice by inhibiting IL-6 and TNF-R1 production. J. Microbiol. Biotechnol. 32: 348-354. 
  111. Jo SG, Noh EJ, Lee JY, Kim G, Choi JH, Lee ME, et al. 2016. Lactobacillus curvatus WiKim38 isolated from kimchi induces IL-10 production in dendritic cells and alleviates DSS-induced colitis in mice. J. Microbiol. 54: 503-509. 
  112. Park JS, Joe I, Rhee PD, Jeong CS, Jeong G. 2017. A lactic acid bacterium isolated from kimchi ameliorates intestinal inflammation in DSS-induced colitis. J. Microbiol. 55: 304-310. 
  113. Yoon BJ, Oh HK, Lee J, Cho JR, Kim MJ, Kim DW, et al. 2021. Effects of probiotics on bowel function restoration following ileostomy closure in rectal cancer patients: a randomized controlled trial. Colorectal Dis. 23: 901-910. 
  114. Myeong JY, Jung HY, Chae HS, Cho HH, Kim DK, Jang YJ, et al. 2023. Protective effects of the postbiotic Lactobacillus plantarum MD35 on bone loss in an ovariectomized mice model. Probiotics Antimicrob. Proteins doi: 10.1007/s12602-023-10065-7. 
  115. Lee J, Kang M, Yoo J, Lee S, Kang M, Yun B, et al. 2023. Lactobacillus rhamnosus JY02 ameliorates sarcopenia by anti-atrophic effects in a dexamethasone-induced cellular and murine model. J. Microbiol. Biotechnol. 33: 915-925. 
  116. Lee K, Kim J, Park SD, Shim JJ, Lee JL. 2021. Lactobacillus plantarum HY7715 ameliorates sarcopenia by improving skeletal muscle mass and function in aged Balb/c mice. Int. J. Mol. Sci. 22: 10023. 
  117. Meng Z, Oh S. 2021. Antioxidant and antimelanogenic activities of kimchi-derived Limosilactobacillus fermentum JNU532 in B16F10 melanoma cells. J. Microbiol. Biotechnol. 31: 990-998. 
  118. Kim H, Kim HR, Jeong BJ, Lee SS, Kim TR, Jeong JH, et al. 2015. Effects of oral intake of kimchi-derived Lactobacillus plantarum K8 lysates on skin moisturizing. J. Microbiol. Biotechnol. 25: 74-80. 
  119. Kang JY, Lee M, Song JH, Choi EJ, Kim DU, Lim SK, et al. 2022. Lactic acid bacteria strains used as starters for kimchi fermentation protect the disruption of tight junctions in the Caco-2 cell monolayer model. J. Microbiol. Biotechnol. 32: 1583-1588. 
  120. Moon HJ, Oh SH, Park KB, Cha YS. 2023. Kimchi and Leuconostoc mesenteroides DRC 1506 alleviate dextran sulfate sodium (DSS)-induced colitis via attenuating inflammatory responses. Foods (Basel, Switzerland) 12: 584. 
  121. Jang SE, Min SW. 2020. Amelioration of colitis in mice by Leuconostoc lactis EJ-1 by M1 to M2 macrophage polarization. Microbiol. Immunol. 64: 133-142. 
  122. Lee NK, Lim SM, Cheon MJ, Paik HD. 2021. Physicochemical analysis of yogurt produced by Leuconostoc mesenteroides H40 and its effects on oxidative stress in neuronal cells. Food Sci. Anim. Resour. 41: 261-273. 
  123. Seo BJ, Rather IA, Kumar VJ, Choi UH, Moon MR, Lim JH, et al. 2012. Evaluation of Leuconostoc mesenteroides YML003 as a probiotic against low-pathogenic avian influenza (H9N2) virus in chickens. J. Appl. Microbiol. 113: 163-171. 
  124. Park MY, Kim J, Kim S, Whang KY. 2018. Lactobacillus curvatus KFP419 and Leuconostoc mesenteroides subsp. mesenteroides KDK411 isolated from kimchi ameliorate hypercholesterolemia in rats. J. Med. Food. 21: 647-653. 
  125. Jo SY, Choi EA, Lee JJ, Chang HC. 2015. Characterization of starter kimchi fermented with Leuconostoc kimchii GJ2 and its cholesterol-lowering effects in rats fed a high-fat and high-cholesterol diet. J. Sci. Food Agric. 95: 2750-2756. 
  126. Park HE, Do KH, Lee WK. 2019. The immune-modulating effects of viable Weissella cibaria JW15 on RAW 264.7 macrophage cells. J. Biomed. Res. 34: 36-43. 
  127. Park HE, Kang KW, Kim BS, Lee SM, Lee WK. 2017. Immunomodulatory potential of Weissella cibaria in aged C57BL/6J mice. J. Microbiol. Biotechnol. 27: 2094-2103. 
  128. Lim SK, Kwon MS, Lee J, Oh YJ, Jang JY, Lee JH, et al. 2017. Weissella cibaria WIKIM28 ameliorates atopic dermatitis-like skin lesions by inducing tolerogenic dendritic cells and regulatory T cells in BALB/c mice. Sci. Rep. 7: 40040. 
  129. Moon YJ, Soh JR, Yu JJ, Sohn HS, Cha YS, Oh SH. 2012. Intracellular lipid accumulation inhibitory effect of Weissella koreensis OK1-6 isolated from kimchi on differentiating adipocyte. J. Appl. Microbiol. 113: 652-658. 
  130. Moon EW, Kim S-Y, Dang Y-M, Park B, Park EJ, Song HY, et al. 2019. Comparison of mcrobial and physicochemical properties between Pogi Kimchi and Mat Kimchi. J. Korean Soc. Food Cult. 34: 217-223. 
  131. Shim S-M, Kim JY, Lee SM, Park J-B, Oh S-K, Kim Y-S. 2012. Profiling of fermentative metabolites in kimchi: Volatile and nonvolatile organic acids. J. Korean Soc. Appl. Biol. Chem. 55: 463-469. 
  132. Na J-R, Oh K-N, Park S-U, Bae D, Choi EJ, Jung MA, et al. 2013. The laxative effects of Maesil (Prunus mume Siebold & Zucc.) on constipation induced by a low-fibre diet in a rat model. Int. J. Food Sci. Nutr. 64: 333-345. 
  133. Whistler R, Daniel J. 1985. Carbohydrates in food chemistry. Academic Press, New York. pp.71. 
  134. Park K. 1995. The nutritional evaluation, and antimutagenic and anticancer effects of kimchi. J. Korean Soc. Food Nutr. 24: 169-182. 
  135. Hwang S, Hur Y, Choi Y, Rhee S, Park K, Lee W. 1997. Inhibitory effect of kimchi extracts on mutagenesis of aflatoxin B1. Environ. Mut. Carcino. 17: 133-137. 
  136. Ryu J, Park K. 2001. Anticlastogenic effect of Baechu (Chinese cabbage) Kimchi and Buchu (leek) Kimchi in supravital staining micronucleus assay using peripheral reticulocytes of mouse. Environ. Mutag. & Carcinog. 21: 51-56. 
  137. Kwak S-H, Cho Y-M, Noh G-M, Om A-S. 2014. Cancer preventive potential of kimchi lactic acid bacteria (Weissella cibaria, Lactobacillus plantarum). J. Cancer Prev. 19: 253-258. 
  138. Kim HJ, Han E-S. 2018. Health promoting effects of kimchi. Food Sci. Nutr: Breakthroughs in Research and Practice. pp. 427-451. 
  139. Kim B, Park KY, Kim HY, Ahn SC, Cho EJ. 2011. Anti-aging effects and mechanisms of kimchi during fermentation under stress-induced premature senescence cellular system. Food Sci. Biotechnol. 20: 643-649. 
  140. Cho E-J, Rhee S-H, Lee S-M, Park K-Y. 1997. In vitro antimutagenic and anticancer effects of kimchi fractions. J. Korean Assoc. Cancer Prev. 2: 113-121. 
  141. Park K-Y, Kim S-H, Son T-J. 1998. Antimutagenic activities of cell wall and cytosol fractions of lactic acid bacteria isolated from kimchi. J. Food Sci. Nutr. 3: 329-333. 
  142. Daeschel MA. 1989. Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technology (Chicago) 43: 164-167. 
  143. Tagg JR, Dajani AS, Wannamaker LW. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40: 722-756. 
  144. Klaenhammer TR. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70: 337-349. 
  145. Kim H, Park J, Lee G. 2004. Isolation of a bacteriocin-producing Lactobacillus sakei strain from Kimchi. J. Korean Soc. Food Sci. Nutr. 33: 560-565. 
  146. Ahn JE, Kim JK, Lee HR, Eom H-J, Han NS. 2012. Isolation and characterization of a bacteriocin-producing Lactobacillus sakei B16 from Kimchi. J. Korean Soc. Food Sci. Nutr. 41: 721-726. 
  147. Lee KH, Park JY, Jeong SJ, Kwon GH, Lee HJ, Chang HC, et al. 2007. Characterization of paraplantaricin C7, a novel bacteriocin produced by Lactobacillus paraplantarum C7 isolated from kimchi. J. Microbiol. Biotechnol. 17: 287-296. 
  148. Choi HJ, Lee HS, Her S, Oh DH, Yoon SS. 1999. Partial characterization and cloning of leuconocin J, a bacteriocin produced by Leuconostoc sp. J2 isolated from the Korean fermented vegetable kimchi. J. Appl. Microbiol. 86: 175-181. 
  149. Yang E-J, Chang J-Y, Lee H-J, Kim J-H, Chung D-K, Lee J-H, et al. 2002. Characterization of the antagonistic activity against Lactobacillus plantarum and induction of bacteriocin production. Korean J. Food Sci. Technol. 34: 311-318. 
  150. Chang JY, Lee HJ, Chang HC. 2007. Identification of the agent from Lactobacillus plantarum KFRI464 that enhances bacteriocin production by Leuconostoc citreum GJ7. J. Appl. Microbiol. 103: 2504-2515. 
  151. Shin M, Han S, Ryu J, Kim K, Lee W. 2008. Isolation and partial characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated from Kimchi. J. Appl. Microbiol. 105: 331-339. 
  152. Kim D, Lee S. 2001. Isolation of the exopolysaccharide producing Enterobacter sp. and physicochemical properties of the polysaccharide produced by this strain. Korean J. Biotechnol. Bioeng. 16: 370-375. 
  153. Sutherland IW. 1998. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 16: 41-46. 
  154. Chou L-S, Weimer B. 1999. Isolation and characterization of acid-and bile-tolerant isolates from strains of Lactobacillus acidophilus. J. Dairy Sci. 82: 23-31. 
  155. Ruas-Madiedo P, Hugenholtz J, Zoon P. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12: 163-171. 
  156. Ho-Jin K, Seung-Chun B, Je-Hyun Y. 2005. Studies on the properties of the stirred yogurt manufactured by exopolysaccharide producing lactic acid bacteria. Food Sci. Anim. Resour. 25: 84-91. 
  157. Cerning J, Bouillanne C, Desmazeaud M, Landon M. 1988. Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnol. Lett. 10: 255-260. 
  158. Kim U-J, Chang H-C. 2006. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from Kimchi. Microbiol. Biotechol. Lett. 34: 196-203. 
  159. Kook MC, Seo MJ, Cheigh CI, Pyun YR, Cho SC, Park H. 2010. Enhanced production of gamma-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. J. Microbiol. Biotechnol. 20: 763-766. 
  160. Dhakal R, Bajpai VK, Baek KH. 2012. Production of gaba (gamma - Aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43: 1230-1241. 
  161. Li H, Cao Y. 2010. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39: 1107-1116. 
  162. Breitkreuz KE, Shelp BJ. 1995. Subcellular compartmentation of the 4-aminobutyrate shunt in protoplasts from developing soybean cotyledons. Plant Physiol. 108: 99-103. 
  163. Kim M-J, Kim K-S. 2012. Isolation and identification of γ-aminobutyric acid (GABA)-producing lactic acid bacteria from Kimchi. J. Korean Soc. Appl. Biol. Chem. 55: 777-785. 
  164. Seok J-H, Park K-B, Kim Y-H, Bae M-O, Lee M-K, Oh S-H. 2008. Production and characterization of kimchi with enhanced levels of γ-aminobutyric acid. Food Sci. Biotechnol. 17: 940-946. 
  165. Oh S-H, Kim H-J, Kim Y-H, Yu J-J, Park K-B, Jeon J-I. 2008. Changes in some physico-chemical properties and γ-aminobutyric acid content of Kimchi during fermentation and storage. Food Sci. Nutr. 13: 219-224. 
  166. Lee H-H, Kim G-H. 2013. Changes in the levels of γ-aminobutyric acid and free amino acids during kimchi fermentation. Korean J. Food Cook. Sci. 29: 671-677. 
  167. Lee KW, Shim JM, Yao Z, Kim JA, Kim JH. 2018. Properties of kimchi fermented with GABA-producing lactic acid bacteria as a starter. J. Microbiol. Biotechnol. 28: 534-541. 
  168. Lim HS, Seo D-H, Cha I-T, Lee H, Nam Y-D, Seo M-J. 2018. Expression and characterization of glutamate decarboxylase from Lactobacillus brevis HYE1 isolated from kimchi. World J. Microbiol. Biotechnol. 34: 44. 
  169. Sa HD, Park JY, Jeong S-J, Lee KW, Kim JH. 2015. Characterization of glutamate decarboxylase (GAD) from Lactobacillus sakei A156 isolated from Jeot-gal. J. Microbiol. Biotechnol. 25: 696-703. 
  170. Wu Q, Shah NP. 2018. Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification. Food Microbiol. 69: 151-158. 
  171. Cho SY, Park MJ, Kim KM, Ryu J-H, Park HJ. 2011. Production of high γ-aminobutyric acid (GABA) sour kimchi using lactic acid bacteria isolated from mukeunjee kimchi. Food Sci. Biotechnol. 20: 403-408. 
  172. Wu Q, Shah NP. 2017. High γ-aminobutyric acid production from lactic acid bacteria: emphasis on Lactobacillus brevis as a functional dairy starter. Crit. Rev. Food Sci. Nutr. 57: 3661-3672. 
  173. Barros-Santos T, Silva KSO, Libarino-Santos M, Elisangela Gouveia C-P, Reis HS, Tamura EK, et al. 2020. Effects of chronic treatment with new strains of Lactobacillus plantarum on cognitive, anxiety- and depressive-like behaviors in male mice. PLoS One 15: e0234037. 
  174. Cho YR, Chang JY, Chang HC. 2007. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17: 104-109. 
  175. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linlokken A, Wilson R, et al. 2014. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 26: 1155-1162. 
  176. Janik R, Thomason LAM, Stanisz AM, Forsythe P, Bienenstock J, aStanisz GJ. 2016. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 125: 988-995. 
  177. Kochalska K, Oakden W, Slowik T, Chudzik A, Pankowska A, Lazorczyk A, et al. 2020. Dietary supplementation with Lactobacillus rhamnosus JB-1 restores brain neurochemical balance and mitigates the progression of mood disorder in a rat model of chronic unpredictable mild stress. Nutr. Res. 82: 44-57. 
  178. Kim H-Y, Park K-Y. 2018. Clinical trials of kimchi intakes on the regulation of metabolic parameters and colon health in healthy Korean young adults. J. Funct. Foods 47: 325-333. 
  179. Choi IH, Noh JS, Han J-S, Kim HJ, Han E-S, Song YO. 2013. Kimchi, a fermented vegetable, improves serum lipid profiles in healthy young adults: randomized clinical trial. J. Med. Food. 16: 223-229. 
  180. Song Y, Baek Y. 2000. Clinical study on the intake of kimchi pills on the lowering of blood lipids. Res. Bull. Kimchi Sci. Technol. 6: 3.