DOI QR코드

DOI QR Code

Advanced Bioremediation Strategies for Organophosphorus Compounds

  • Anish Kumar Sharma (Department of Biotechnology, School of Sciences, P.P. Savani University) ;
  • Jyotsana Pandit (Department of Environmental Science, School of Sciences, P.P. Savani University)
  • Received : 2023.09.04
  • Accepted : 2023.11.03
  • Published : 2023.12.28

Abstract

Organophosphorus (OP) pesticides, particularly malathion, parathion, diazinon, and chlorpyrifos, are widely used in both agricultural and residential contexts. This refractory quality is shared by certain organ phosphorus insecticides, and it may have unintended consequences for certain non-target soil species. Bioremediation cleans organic and inorganic contaminants using microbes and plants. Organophosphate-hydrolyzing enzymes can transform pesticide residues into non-hazardous byproducts and are increasingly being considered viable solutions to the problem of decontamination. When coupled with system analysis, the multi-omics technique produces important data for functional validation and genetic manipulation, both of which may be used to boost the efficiency of bioremediation systems. RNA-guided nucleases and RNA-guided base editors include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR), which are used to alter genes and edit genomes. The review sheds light on key knowledge gaps and suggests approaches to pesticide cleanup using a variety of microbe-assisted methods. Researches, ecologists, and decision-makers can all benefit from having a better understanding of the usefulness and application of systems biology and gene editing in bioremediation evaluations.

Keywords

Acknowledgement

We are grateful to everyone who helped us finish this work. We also thank Dr. Parag Sanghani, Provost PP Savani University, for his encouragement, assistance, and generous resources, which helped us finish our research. Dr. Jyotsana Pandit's ideas and persistent effort in reviewing data and writing the report are also appreciated.

References

  1. Santillan JY, Muzlera A, Molina M, Lewkowicz ES, Iribarren AM. 2020. Microbial degradation of organophosphorus pesticides using whole cells and enzyme extracts. Biodegradation 31: 423-433.  https://doi.org/10.1007/s10532-020-09918-7
  2. Fosu-Mensah B, Okoffo E, Darko G, Gordon C. 2016. Organophosphorus pesticide residues in soils and drinking water sources from cocoa producing areas in Ghana. Environ. Syst. Res. 5: 10. 
  3. Allmaras RR, Wilkins DE, Burnside OC, Mulla DJ. 2018. Agricultural Technology and adoption of conservation practices. pp. 99-158. In: Pierce FJ, Frye WW, editors. Advances in Soil and Water Conservation. New York, Routledge. 
  4. Eskenazi B, Bradman A, Castorina R. 1999. Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ. Health Perspect. 107(Suppl 3): 409-419.  https://doi.org/10.1289/ehp.99107s3409
  5. Anastassiades M, Lehotay S, Stajnbaher D, Schenck F. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. J. AOAC Int. 86: 412-431.  https://doi.org/10.1093/jaoac/86.2.412
  6. Aldas VA, Poursat B, Sutton N. 2022. Potential and limitations for monitoring of pesticide biodegradation at trace concentrations in water and soil. World J. Microbiol. Biotechnol. 38: 240. 
  7. Lekshmi C. 2023. Graphene quantum dots derived from honey and mangostin as sustainable materials to construct fluorescence turn on molecular switches for pesticide detection. ChemistrySelect 8: e202204869. 
  8. Jaiswal S, Singh D, Shukla P. 2019. Gene editing and systems biology tools for pesticide bioremediation: A review. Front. Microbiol. 10: 87. 
  9. Karalliedde L, Senanayake N. 1999. Organophosphorus insecticide poisoning. J. Int. Fed. Clin. Chem. 11: 4-9. 
  10. Sogorb MA, Vilanova E, Carrera V. 2004. Future application of phosphotriesterases in the prophylaxis and treatment of organophosphorus insecticide and nerve agent poisoning. Toxicol. Lett. 151: 219-233.  https://doi.org/10.1016/j.toxlet.2004.01.022
  11. Beauregard G, Lum J, Roufogalis BD. 1981. Effect of histidine modification on the aging of organophosphate-inhibited acetylcholinesterase. Biochem. Pharmacol. 30: 2915-2920.  https://doi.org/10.1016/0006-2952(81)90252-5
  12. Zwiener RJ, Ginsburg CM. 1988. Organophosphate and carbamate poisoning in infants and children. Pediatrics 81: 121-126.  https://doi.org/10.1542/peds.81.1.121
  13. Lessenger JE, Reese BE. 1999. Rational use of cholinesterase activity testing in pesticide poisoning. J. Am. Board Fam. Pract. 12: 307-314.  https://doi.org/10.3122/jabfm.12.4.307
  14. De Silva HJ, Samarawickrema NA, Wickremasinghe AR. 2006. Toxicity due to organophosphorus compounds: what about chronic exposure. Trans. R. Soc. Trop. Med. Hyg. 100: 803-806.  https://doi.org/10.1016/j.trstmh.2006.05.001
  15. Ray DE, Richards PG. 2001. The potential for toxic effects of chronic, low-dose exposure to organophosphates. Toxicol. Lett. 120: 343-351.  https://doi.org/10.1016/S0378-4274(01)00266-1
  16. Mkenda P, Ndakidemi P, Mbega E, Stevenson P, Arnold S, Gurr G, et al. 2019. Multiple ecosystem services from field margin vegetation for ecological sustainability in agriculture: scientific evidence and knowledge gaps. PeerJ. 7: e8091. 
  17. Agnihotri NP, Pandey SY, Jain HK, Srivastava KP. 1981. Persistence, leaching and movement of chlorfenvinphos, chlorpyrifos, disulfoton, fensulfothion, monocrotophos and tetrachlorvinphos in soil. Indian J. Agric. Chem. 24: 27-31. 
  18. Farhan M, Khan AU, Wahid A, Ahmad M, Ahmad F. 2012. Biodegradation of chlorpyrifos using indigenous Pseudomonas sp. isolated from industrial drain. Pak. J. Nutr. 11: 1183-1189.  https://doi.org/10.3923/pjn.2012.1183.1189
  19. Abatenh E, Gizaw B, Tsegaye Z, Wassie M. 2017. The role of microorganisms in bioremediation- a review. Open J. Environ. Biol. 22: 038-046.  https://doi.org/10.17352/ojeb.000007
  20. Nayak P, Solanki H. 2022. Impact of agriculture on environment and bioremediation techniques for improvisation of contaminated site. Int. Assoc. Biol. Comput. Digest. 1: 145-156.  https://doi.org/10.56588/iabcd.v1i1.29
  21. Parween T, Bhandari P, Sharma R, Jan S, Siddiqui ZH, Patanjali PK. 2018. Bioremediation: a sustainable tool to prevent pesticide pollution. pp. 215-227. In Modern Age Environmental Problems and their Remediation, eds Mohammad O, Mohammad ZK, Iqbal MII. Cham: Springer. 
  22. Parkin TB, Daniel RS. 1994. Modeling environmental effects on enhanced carbofuran degradation. Pestic. Sci. 40: 163-168.  https://doi.org/10.1002/ps.2780400211
  23. Amani F, Safari Sinegani AA, Ebrahimi F, Nazarian S. 2018. Biodegradation of chlorpyrifos and diazinon organophosphates by two bacteria isolated from contaminated agricultural soils. Biol. J. Microorg. 7: 27-39. 
  24. Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S. 2009. Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro2-pyridinol by Bacillus pumilus strain C2A1. J. Hazard. Mater. 168: 400-405.  https://doi.org/10.1016/j.jhazmat.2009.02.059
  25. Briceno G, Fuentes MS, Rubilar O, Jorquera M, Tortella G, Palma G, et al. 2015. Removal of the insecticide diazinon from liquid media by free and immobilized Streptomyces sp. isolated from agricultural soil. J. Basic Microbiol. 55: 293-302.  https://doi.org/10.1002/jobm.201300576
  26. Pailan S, Gupta D, Apte S, Krishnamurthi S, Saha P. 2015. Degradation of organophosphate insecticide by a novel Bacillus aryabhattai strain SanPS1, isolated from soil of agricultural feld in Burdwan, West Bengal, India. Int. Biodeterior. Biodegrad. 103: 191-195.  https://doi.org/10.1016/j.ibiod.2015.05.006
  27. Sharma A, Pandit J, Sharma R, Shirkot P. 2016. Biodegradation of chlorpyrifos by Pseudomonas resinovarans strain AST2.2 isolated from enriched cultures. Curr. World Environ. 11: 267-278.  https://doi.org/10.12944/CWE.11.1.33
  28. Sharma AK, Kasture A, Pandit J, Shirkot P. 2017. Isolation, characterization and identification of chlorpyrifos tolerant Pseudomonas strain exhibiting extracellular Organo-Phosphorus Hydrolase (OPH) activity from apple orchard soils of himachal pradesh. Asian J. Microbiol. Biotechnol. Environ. Sci. 19: 935-944. 
  29. Li XH, He J, Li SP. 2007. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res. Microbiol. 158: 143-149.  https://doi.org/10.1016/j.resmic.2006.11.007
  30. Xu G, Li Y, Zheng W, Peng X, Li W, Yan Y. 2007. Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon sp. Biotechnol. Lett. 29: 1469-1473.  https://doi.org/10.1007/s10529-007-9444-0
  31. Van Eerd LL, Hoagland RE, Zablotowicz RM, Hall JC. 2003. Pesticide metabolism in plants and microorganisms. Weed Sci. 51: 472-495.  https://doi.org/10.1614/0043-1745(2003)051[0472:PMIPAM]2.0.CO;2
  32. Singh BK. 2009. Organophosphorus-degrading bacteria: ecology and industrial applications. Nat. Rev. Microbiol. 7: 156-164.  https://doi.org/10.1038/nrmicro2050
  33. Gothwal A, Dahiya M, Beniwa P, Hooda V. 2014. Purification and kinetic studies of organophosphorus hydrolase from B. diminuta, Int. J. Pharm. Pharmaceut. Sci. 6: 341-344. 
  34. Haque MA, Hong SY, Hwang CE, Kim SC, Cho KM. 2018. Cloning of an organophosphorus hydrolase opdD gene of Lactobacillus sakei WCP904 isolated from chlorpyrifos-impregnated kimchi and hydrolysis activities of its gene product for organophosphorus pesticides. Appl. Biol. Chem. 61: 643-651.  https://doi.org/10.1007/s13765-018-0397-x
  35. Ying W, YaPing W, Can H, Lixin M, Hong Y, Yong M. et al. 2021. High-level extracellular production and immobilization of methyl parathion hydrolase from Plesiomonas sp. M6 expressed in Pichia pastoris. Protein Expr. Purif. 183: 105859. 
  36. Yu H, Yan X, Shen W, Hong Q, Zhang J, Shen Y, Li S. 2009. Expression of methyl parathion hydrolase in Pichia pastoris. Curr. Microbiol. 59: 573-578.  https://doi.org/10.1007/s00284-009-9484-x
  37. Zhongli C, Shunpeng L, Guoping F. 2001. Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl. Environ. Microbiol. 67: 4922-4925.  https://doi.org/10.1128/AEM.67.10.4922-4925.2001
  38. Cui ZL, Li SP, Fu GP. 2001. Isolation of methyl parathion degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl. Environ. Microbiol. 67: 4922-4925.  https://doi.org/10.1128/AEM.67.10.4922-4925.2001
  39. Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG. 2002. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68: 3371-3376.  https://doi.org/10.1128/AEM.68.7.3371-3376.2002
  40. Lu P, Li Q, Liu H, Feng Z, Yan X, Hong Q, et al. 2013. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresour. Technol. 27: 337-342.  https://doi.org/10.1016/j.biortech.2012.09.116
  41. Abraham J, Silambarasan S. 2016. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pestic. Biochem. Physiol. 26: 13-21.  https://doi.org/10.1016/j.pestbp.2015.07.001
  42. Shen YJ, Lu P, Mei H, Yu HJ, Hong Q, Li SP. 2010. Isolation of a methyl parathion-degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation 21: 785-792.  https://doi.org/10.1007/s10532-010-9343-2
  43. Chino-Flores C, Dantan-Gonzalez E, Vazquez-Ramos A, Tinoco-Valencia R, Diaz-Mendez R, Sanchez-Salinas E, et al. 2012. Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides. Biodegradation 23: 387-397.  https://doi.org/10.1007/s10532-011-9517-6
  44. Wang Y, Liu C, Wan J, Sun X, Ma W, Ni H. 2018. Molecular cloning and characterization of a methyl parathion hydrolase from an organophosphorus-degrading bacterium, Serratia marcescens MEW06. FEMS Microbiol. Lett. 365: doi: 10.1093/femsle/fny279. 
  45. Islam SMA, Math RK, Cho KM, Lim WJ, Hong SY, Kim JM. et al. 2010. Organophosphorus hydrolase OpdB of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. J. Agric. Food Chem. 58: 5380-5386.  https://doi.org/10.1021/jf903878e
  46. Zhong W, Chen J. 2006. Environmental biotechnology in China: Progress and prospect. Biotechnol. J. 1: 1241-1252.  https://doi.org/10.1002/biot.200600129
  47. Gu LF, He J, Huang X, Jia KZ, Li SP. 2006. Construction of a versatile degrading bacteria Pseudomonas putida KT2440-DOP and its degrading characteristics. Wei Sheng Wu Xue Bao. 46: 763-766. 
  48. Schenk G, Mateen I, Ng, TK, Pedroso MM, Miti'c N, Jafelicci M, Marques RFC, et al. 2016. Organophosphate degrading metal-lohydrolases: Structure and function of potent catalysts for applications in bioremediation. Coord. Chem. Rev. 317: 122-131.  https://doi.org/10.1016/j.ccr.2016.03.006
  49. Sidhu GK, Singh S, Kumar V, Dhanjal DS, Datta S, Singh J. 2019. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Crit. Rev. Environ. Sci. Technol. 49: 1135-1187.  https://doi.org/10.1080/10643389.2019.1565554
  50. Moreno-Medina DA, Sanchez-Salinas E, Ortiz-Hernandez L. 2014. Removal of methyl parathion and coumaphos pesticides by a bacterial consortium immobilized in Luffa cylindrica. Rev. Int. Contam. Ambient. 30: 51-63. 
  51. Mulchandani A, Kaneva I, Chen W. 1999. Detoxification of organophosphate nerve agents by immobilized Escherichia coli with surface-expressed organophosphorus hydrolase. Biotechnol. Bioeng. 63: 216-223.  https://doi.org/10.1002/(SICI)1097-0290(19990420)63:2<216::AID-BIT10>3.0.CO;2-0
  52. Talwar MP, Ninnekar HZ. 2015. Biodegradation of pesticide profenofos by the free and immobilized cells of Pseudoxanthomonas suwonensis strain HNM. J. Basic. Microbiol. 55: 1094-1103.  https://doi.org/10.1002/jobm.201400978
  53. Gresham C, Rosenbaum C, Gaspari RJ, Jackson CJ, Bird SB. 2010. Kinetics and efficacy of an organophosphorus hydrolase in a rodent model of methyl-parathion poisoning. Acad. Emerg. Med. 17: 736-740.  https://doi.org/10.1111/j.1553-2712.2010.00798.x
  54. Fang LC, Shi QY, Xu LY, Shi TZ, Wu XW, Li QX, Hua RM. 2020. Enantioselective uptake determines degradation selectivity of chiral profenofos in Cupriavidus nantongensis X1T. J. Agric. Food Chem. 68: 6493-6501.  https://doi.org/10.1021/acs.jafc.0c00132
  55. Shi TZ, Fang LC, Qin H, Wu XW, Li QX, Hua RM. 2019. Minute-speed biodegradation of organophosphorus insecticides by Cupriavidus nantongensis X1T. J. Agric. Food Chem. 67: 13558-13567.  https://doi.org/10.1021/acs.jafc.9b06157
  56. Furlong CE, Richter RJ, Seidel SL, Costa LG, Motulsky AG. 1989. Spectrophotometric assays for the enzymatic hydrolysis of the active metabolites of chlorpyrifos and parathion by plasma paraoxonase/arylesterase. Anal. Biochem. 180: 242-247.  https://doi.org/10.1016/0003-2697(89)90424-7
  57. Gao Y, Chen SH, Hu MY, Hu QB, Luo JJ, Li YN. 2012. Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS One 7: e38137. 
  58. Mulbry WW, Karns JS. 1989. Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl. Environ. Microbiol. 55: 289-293.  https://doi.org/10.1128/aem.55.2.289-293.1989
  59. Singh AK, Srikanth NS, Malhotra OP, Seth PK. 1989. Characterization of carboxylesterase from malathion degrading bacterium: Pseudomonas sp. M-3. Bull. Environ. Contam. Toxicol. 42: 860-867.  https://doi.org/10.1007/BF01701627
  60. Barman DN, Haque MA, Islam SM, Yun HD, Kim MK. 2014. Cloning and expression of ophB gene encoding organophosphorus hydrolase from endophytic Pseudomonas sp. BF1-3 degrades organophosphorus pesticide chlorpyrifos. Ecotoxicol. Environ. Saf. 108: 135-141.  https://doi.org/10.1016/j.ecoenv.2014.06.023
  61. Ekkhunnatham A, Jongsareejit B, Yamkunthong W, Wichitwechkarn J. 2012. Purification and characterization of methyl parathion hydrolase from Burkholderia cepacia capable of degrading organophosphate insecticides. World J. Microbiol. Biotechnol. 28: 1739-1746.  https://doi.org/10.1007/s11274-011-0985-y
  62. Hao J, Liu J, Sun M. 2014. Identification of a marine Bacillus strain C5 and parathion-methyl degradation characteristics of the extracellular esterase B1. Biomed. Res. Int. 2014: 863094. 
  63. Ambreen S, Yasmin A, Aziz S. 2020. Isolation and characterization of organophosphorus phosphatases from Bacillus thuringiensis MB497 capable of degrading Chlorpyrifos, Triazophos and Dimethoate. Heliyon 6: e04221. 
  64. Thengodkar RRM, Sivakami S. 2010. Degradation of chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation 21: 637-644.  https://doi.org/10.1007/s10532-010-9331-6
  65. Dumas DP, Caldwell SR, Wild JR, Raushel FM. 1989. Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J. Biol. Chem. 264: 19659-19665.  https://doi.org/10.1016/S0021-9258(19)47164-0
  66. Bhatt P. 2019. Smart bioremediation technologies: microbial enzymes. Amsterdam: Elsevier Science. 
  67. Chakraborty R, Wu CH, Hazen TC. 2012. Systems biology approach to bioremediation. Curr. Opin. Biotechnol. 23: 483-490.  https://doi.org/10.1016/j.copbio.2012.01.015
  68. Otwell AE, Lopez Garcia de Lomana A, Gibbons SM, Orellana MV, Baliga NS. 2018. Systems biology approaches towards predictive microbial ecology. Environ. Microbiol. 20: 4197-4209.  https://doi.org/10.1111/1462-2920.14378
  69. Bharagava RN, Purchase D, Saxena G, Mulla S. 2019. Applications of metagenomics in microbial bioremediation of pollutants: from genomics to environmental cleanup. pp. 459-477. In: Microbial Diversity in the Genomic Era. Academic Press. 
  70. Marco DE, Abram F. 2019. Using genomics, metagenomics and other "Omics" to assess valuable microbial ecosystem services and novel biotechnological applications. Front. Microbiol. 10: 151. 
  71. Rodriguez A, Castrejon-Godinez ML, Salazar-Bustamante E, Gama-Martinez Y, Sanchez-Salinas E, Mussali-Galante P, et al. 2020. Omics approaches to pesticide biodegradation. Curr. Microbiol. 77: 545-563.  https://doi.org/10.1007/s00284-020-01916-5
  72. Bhatt P, Gangola S, Chaudhary P, Khati P, Kumar G, Sharma A. et al. 2019. Pesticide induced up-regulation of esterase and aldehyde dehydrogenase in indigenous Bacillus spp. Bioremediat. J. 23: 42-52.  https://doi.org/10.1080/10889868.2019.1569586
  73. Techtmann SM, Hazen TC. 2016. Metagenomic applications in environmental monitoring and bioremediation. J. Ind. Microbiol. Biotechnol. 43: 1345-1354.  https://doi.org/10.1007/s10295-016-1809-8
  74. De Sousa CS, Hassan SS, Pinto AC, Silva WM, De Almeida SS, Soares SDC, et al. 2018. Microbial omics: applications in biotechnology. pp. 3-20. In Omics Technologies and Bio-Engineering, eds D. Barh and V. Azevedo. Cambridge, MA: Academic Press. 
  75. Hassan S, Ganai BA. 2023. Deciphering the recent trends in pesticide bioremediation using genome editing and multi-omics approaches: A review. World J. Microbiol. Biotechnol. 39: 151. 
  76. Arora PK, Bae H. 2014. Integration of bioinformatics to biodegradation. Biol. Proc. Online 6: 8. 
  77. Erythropel HC, Zimmerman JB, de Winter TM, Petitjean L, Melnikov F, Lam CH, et al. 2018. The green chemisTREE: 20 years after taking root with the 12 principles. Green Chem. 20: 1929-1961.  https://doi.org/10.1039/C8GC00482J
  78. Korjus H. 2014. Polluted soils restoration. pp.411-480. In: Numben ST, Almaraz RA, Eswaran H, editors. Climate Change and Restoration of Degraded Land. Madrid: Colegio de Ingenieros de Montes. 
  79. Bhatt P. 2018. In silico tools to study the bioremediation in microorganisms. pp. 389-395. In: Handbook of Research on Microbial Tools for Environmental Waste Management. Harrisburg: IGI Global. 
  80. Selzer PM, Marhofer RJ, Koch O. 2018. Comparative genome analyses. pp. 123-140. In: Applied Bioinformatics. Cham: Springer. 
  81. Jaiswal S, Shukla P. 2020 Alternative strategies for microbial remediation of pollutants via synthetic biology. Front. Microbiol. 11: 808. 
  82. Shah V, Jain K, Desai C, Madamwar D. 2012. Molecular analyses of microbial activities involved in bioremediation. pp. 221-247. In: Microorganisms in Environmental Management. Dordrecht: Springer. 
  83. Almeida L, Moraes L, Trigo J, Omoto C, Consoli F. 2017. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: a potential source for biotechnological exploitation. PLoS One 12: e0174754. 
  84. Rouet P, Smih F, Jasin M. 1994. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91: 6064-6068.  https://doi.org/10.1073/pnas.91.13.6064
  85. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, et al. 2011. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr. Gene Ther. 11: 11-27.  https://doi.org/10.2174/156652311794520111
  86. Grizot S, Epinat JC, Thomas S, Duclert A, Rolland S, Paques F, et al. 2010. Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Nucleic Acids Res. 38: 2006-2018.  https://doi.org/10.1093/nar/gkp1171
  87. Bier E, Harrison MM, O'Connor-Giles KM, Wildonger J. 2018. Advances in engineering the fly genome with the CRISPR-Cas system. Genetics 208: 1-18.  https://doi.org/10.1534/genetics.117.1113
  88. Campbell K, Xia J, Nielsen J. 2017. The impact of systems biology on bioprocessing. Trends Biotechnol. 35: 1156-1168.  https://doi.org/10.1016/j.tibtech.2017.08.011
  89. Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, et al. 2018. Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci. Total Environ. 628-629: 1582-1599.  https://doi.org/10.1016/j.scitotenv.2018.02.037
  90. Singh V, Gohil N, Ramirez Garcia R, Braddick D, Fofie CK. 2018. Recent advances in CRISPR-Cas9 genome editing technology for biological and biomedical investigations. J. Cell. Biochem. 119: 81-94.  https://doi.org/10.1002/jcb.26165
  91. Waryah CB, Moses C, Arooj M, Blancafort P. 2018. Zinc fingers, TALES, and CRISPR systems: a comparison of tools for epigenome editing. Epigenome Editing 1767: 19-63.  https://doi.org/10.1007/978-1-4939-7774-1_2
  92. Wong DWS. 2018. Gene targeting and genome editing. pp. 187-197. In The ABCs of Gene Cloning, ed Wong DWS. Cham: Springer. 
  93. Suenaga H. 2012. Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ. Microbiol. 14: 13-22.  https://doi.org/10.1111/j.1462-2920.2011.02438.x
  94. Yadav R, Kumar V, Baweja M, Shukla P. 2018. Gene editing and genetic engineering approaches for advanced probiotics: A review. Crit. Rev. Food Sci. Nutr. 58: 1735-1746.  https://doi.org/10.1080/10408398.2016.1274877
  95. Basu S, Rabara RC, Negi S, Shukla P. 2018. Engineering PGPMOs through gene editing and systems biology: a solution for phytoremediation. Trends Biotechnol. 36: 499-510.  https://doi.org/10.1016/j.tibtech.2018.01.011
  96. Dai Z, Zhang S, Yang Q, Zhang W, Qian X, Dong W, et al. 2018. Genetic tool development and systemic regulation in biosynthetic technology. Biotechnol. Biofuels 11: 152. 
  97. Canver MC, Joung JK, Pinello L. 2018. Impact of genetic variation on CRISPR-Cas targeting. CRISPR J. 1: 159-170.  https://doi.org/10.1089/crispr.2017.0016
  98. Meyer M, Angelis M, Wurst W, Kuhn R. 2010. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 107: 15022-15026.  https://doi.org/10.1073/pnas.1009424107
  99. Lillico S, Proudfoot C, Carlson D, Stverakova D, Neil C, Blain C, et al. 2013. Live pigs produced from genome edited zygotes. Sci. Rep. 3: 2847. 
  100. Liu P, Wang W, Wei D. 2017. Use of transcription activator-like effector for efficient gene modification and transcription in the filamentous fungus Trichoderma reesei. J. Ind. Microbiol. Biotechnol. 44: 1367-1373.  https://doi.org/10.1007/s10295-017-1963-7
  101. Tsuboi Y, Sakuma T, Yamamoto T, Horiuchi H, Takahashi F, Igarashi K, et al. 2022. Gene manipulation in the Mucorales fungus Rhizopus oryzae using TALENs with exonuclease overexpression. FEMS Microbiol. Lett. 369: fnac010. 
  102. Banerjee A, Banerjee C, Negi S, Chang J-S, Shukla P. 2018. Improvements in algal lipid production: a systems biology and gene editing approach. Crit. Rev. Biotechnol. 38: 369-385.  https://doi.org/10.1080/07388551.2017.1356803
  103. Shah T, Andleeb T, Lateef S, Noor MA. 2018. Genome editing in plants: advancing crop transformation and overview of tools. Plant Physiol. Biochem. 131: 12-21.  https://doi.org/10.1016/j.plaphy.2018.05.009
  104. Cooper LA, Stringer AM, Wade JT. 2018. Determining the specificity of cascade binding, interference, and primed adaptation In Vivo in the Escherichia coli type IE CRISPR-Cas system. mBio 9: e02100-17.  https://doi.org/10.1128/mBio.02100-17
  105. Swartjes T, Staals RHJ, van der Oost J. 2020. Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Biochem. Soc. Trans. 48: 207-219.  https://doi.org/10.1042/BST20190563
  106. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771.  https://doi.org/10.1016/j.cell.2015.09.038
  107. Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith AB. 2015. Advances in CRISPR-Cas9 genome engineering: Lessons learned from RNA interference. Nucleic Acids Res. 43: 3407-3419.  https://doi.org/10.1093/nar/gkv226
  108. Liu D, Hu R, Palla KJ, Tuskan GA, Yang X. 2016. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. Curr. Opin. Plant Biol. 30: 70-77.  https://doi.org/10.1016/j.pbi.2016.01.007
  109. Huang J, Cook DE. 2022. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens. FEMS Microbiol. Rev. 46: fuac035. 
  110. Barakate A, Stephens J. 2016. An overview of crispr based tools and their improvements: New opportunities in understanding plant-pathogen interactions for better crop protection. Front. Plant Sci. 7: 765. 
  111. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. 2017. RNA targeting with CRISPR-Cas13. Nature 550: 280-284.  https://doi.org/10.1038/nature24049
  112. Terns MP. 2018. CRISPR-based technologies: Impact of RNA-targeting systems. Mol. Cell 72: 404-412.  https://doi.org/10.1016/j.molcel.2018.09.018
  113. Zhang Y, Ge H, Marchisio MA. 2022. A mutated Nme1Cas9 Is a functional alternative RNase to both LwaCas13a and RfxCas13d in the yeast S. cerevisiae. Front. Bioeng. Biotechnol. 10: 922949. 
  114. Swarts DC, Jinek M. 2018. Cas9 versus cas12a/cpf1: structure-function comparisons and implications for genome editing. Wiley Interdiscip. Rev. RNA. 9: e1481. 
  115. Greene AC. 2018. CRISPR-based antibacterials: transforming bacterial defense into offense. Trends Biotechnol. 36: 127-130.  https://doi.org/10.1016/j.tibtech.2017.10.021
  116. Dangi AK, Sharma B, Hill RT, Shukla P. 2019. Bioremediation through microbes: systems biology and metabolic engineering approach. Crit. Rev. Biotechnol. 39: 79-98.  https://doi.org/10.1080/07388551.2018.1500997
  117. Saxena P, Singh NK, Singh AK, Pandey S, Thanki A, Yadav TC. 2020. Recent advances in phytoremediation using genome engineering CRISPR-Cas9 technology. pp.125-141. In: Bioremediation of Pollutants. New York. 
  118. Stein HP, Navajas-Perez R, Aranda E. 2018. Potential for CRISPR genetic engineering to increase xenobiotic degradation capacities in model fungi. pp. 61-78. In: Approaches in Bioremediation. Cham: Springer. 
  119. Gehrke JM, Cervantes O, Clement MK, Wu Y, Zeng J, Bauer DE, et al. 2018. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 36: 977-982.  https://doi.org/10.1038/nbt.4199
  120. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, et al. 2017. Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Nature 551: 464-471.  https://doi.org/10.1038/nature24644
  121. Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, et al. 2018. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36: 536-539.  https://doi.org/10.1038/nbt.4148
  122. Zafra MP, Schatoff EM, Katti A, Foronda M, Breinig M, Schweitzer AY, et al. 2018. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotechnol. 36: 888-893.  https://doi.org/10.1038/nbt.4194
  123. Patel H, Shakhreliya S, Maurya R, Pandey VC, Gohil N, Bhattacharjee G, et al. 2022 CRISPR-assisted strategies for futuristic phytoremediation. Assisted Phytoremediation 2022: 203-220. 
  124. Okoli AS, Blix T, Myhr AI, Xu W, Xu X. 2021. Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective. Transgenic Res. pp. 1-21. 
  125. Zhang J, Zhang H, Li S, Li J, Yan L, Xia L. 2021. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. J. Integr. Plant Biol. 63: 1649-1663.  https://doi.org/10.1111/jipb.13151
  126. Zhang Y, Geng Y, Li S, Shi T, Ma X, Hua R, et al. 2023. Efficient knocking out of the organophosphorus insecticides degradation gene opdB in Cupriavidus nantongensis X1T via CRISPR/Cas9 with red system. Int. J. Mol. Sci. 24: 6003. 
  127. Qian S, Chen Y, Xu X, Peng C, Wang X, Wu H, et al. 2022. Advances in amplification-free detection of nucleic acid: CRISPR/Cas system as a powerful tool Anal. Biochem. 643: 114593.