DOI QR코드

DOI QR Code

전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust

  • 윤재홍 (창원대학교 공과대학 재료공학부 금속재료공학과) ;
  • 윤치현 (창원대학교 공과대학 재료공학부 금속재료공학과) ;
  • ;
  • 투고 : 2023.01.13
  • 심사 : 2023.02.16
  • 발행 : 2023.02.28

초록

전기로에서 고철(Scrap)의 용해과정에서 발생되는 분진량은 고철장입량의 약1.5%정도이며, 주로 백필터(Bag Filter)에서 포집된다. 전기로 제강분진의 주요한 구성원소인 아연(Zn)과 철(Fe)중에서 아연성분은, 제강분진에 탄소계의 환원재(코크스, 무연탄)와 석회석(C/S제어)을 첨가하여 Pellet형태로 가공한 후에 반응로(Rotary Kiln 또는 RHF)에 장입하여 환원, 휘발, 재산화의 단계적인 세부반응을 거쳐서, 60wt%Zn을 함유한 조산화아연(Crude Zinc Oxide)으로 회수된다. 한편 제강분진 중의 철(Fe)성분은, Fe-Base의 Clinker(2차부산물)라고 하는 고형물의 형태로 반응기로부터 배출된다. 기존의 Fe-Clinker의 처리방법은, 각국의 상황에 따라서 다양한 방안들이 시행되고 있는데, 대표적인 처리방법으로는 매립, 재활용(로반재, 콘크리트용 골재, 시멘트제조용 Fe-Source), 그 외에 다양한 처리방법들이 있다. 이들 방법들 중에서 매립의 경우는, 침출수에 의한 환경오염, 고가의 매립비용, Fe자원의 낭비 등의 이유로, 결코 바람직한 처리방법이라고 할 수는 없다. 그러나 Fe-Clinker중의 Fe성분을 전기로를 이용하여 직접적으로 재활용하는 방법에 대한 연구결과는 거의 찾아볼 수 없었다. 따라서 본 연구에서는 Fe-Clinker중의 Fe성분을 보다 적극적으로 회수하기 위한 방법으로서, 먼저 Fe-Clinker를 분쇄하고 이어서 비중선별과 자력선별을 순차적으로 실시하여, Fe-성분이 농축된 조분(Coarse particle, >약10㎛)과 슬래그성분을 주로 함유한 미분(Fine particle, <약10㎛)으로 분리하였다. 이렇게 분리한 조분에 탄소계 환원제(코크스, 무연탄)와 점결재(전분)를 첨가하여 단광 Clinker를 제조하여, 전기로에 고철을 장입할 때에 소량(1~3wt%)의 단광Clinker를 함께 장입하여, 단광Clinker의 첨가재(가탄재, Fe-Source, 발열재 등으로서의 역할)로서의 사용가능성을 조사하였다. 그 결과, 비록 소량이지만, 전력원단위와 생산수율이 다소 향상되는 효과를 나타내었으며, 용융금속에 대한 가탄효과도 확인할 수 있었다.

The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).

키워드

과제정보

이 논문은 2021-2022년도 창원대학교 자율연구과제 연구비지원으로 수행되었으므로, 이에 감사드립니다.

참고문헌

  1. S. Nakazawa, T. Azakami, A. Yazawa, 1999 : Simulation of Pyro metallurgical Processing of EAF Dust Bearing Noneferrous Metals, J. of MMIJ, 115, pp.781-786. https://doi.org/10.2473/shigentosozai.115.781
  2. K. B. Yoon, 2000 : A Study on Reduction Treatment of EAF's Dusts Mixed with Millscale, J. of Korean Inst. Of Resources Recycling, 9(6), pp.45-52.
  3. B. S. Kim, J. M. Yoo, J. T. Park, et al., 2006 : A Kinetic Study of the Carbothermic Reduction of Zinc Oxide with Various Additives, Material Transactions, 47(9), pp.2421-2426. https://doi.org/10.2320/matertrans.47.2421
  4. H. Oda, T. Ibaraki, Y. Abe, 2006 : Dust Recycling System by the Rotary Hearth Furnace(RHF), Nippon-steel Technical Report, No.94.
  5. J. Ruetten, 2009 : The Topical Waelz Process for Recycling of EAF Dust State of the Art and Future Challenges, 10th Inst. Sympo. on East Asian Resource Recycling Technology (Earth 2009), The Korean Institute of Resources Recycling, Jejudo, November 2-6, 2009, Korea.
  6. B. J Jung, S. M. Bae, 2001 : A Study on Behavior of Volatile Compounds by Carbon Materials in Initial Reduction Stage of EAF dust, J. of Korean Soild Wastes Engineering Society, 198(2), pp.121-128.
  7. Jaehong Yoon, Chihyun Yoon, Myungwon Lee, 2017: A Study on Kinetic of Volatilization Behavior of Metal Elements Contained in Electric Arc Furnace Dust, J. of Korean Inst. of Resources Recycling, 26(3), pp.3-11.
  8. Jaehong Yoon, Chi hyun Yoon, Myungwon Lee, 2014 : A Study on Roasting Refinement of Crude-ZnO from Electric Arc Furnace Steel Dust, J. of Korean Inst. of Resources Recycling, 23(1), pp.1-6. https://doi.org/10.7844/kirr.2014.23.1.58
  9. Jaehong Yoon, Chi-hyun Yoon, 2021 : A Study on the Separation and Recovery of Useful Metallic Elements(Zn, Pb) from the 2nd Dust in Refining of Crude-Zinc Oxide, J of Korean Inst. of Resources Recycling, 30(1), pp.66-76. https://doi.org/10.7844/kirr.2021.30.1.66
  10. N. Kanari, D. Mishra, I. Gaballah, et al., 2002 : Zinc Recovery from EAF Dust through Thermal Reduction, Fundamentals of Advanced Materials for Energy Conversion, TMS, Warrendalc, PA, pp.349-357.
  11. B. K. Park, K. H. Lee, Y. H. Kim, et al., 1998 : The Reduction Rate of Metal Oxides Contained in Electric Arc Furnace Dust By Solid Carbon depending on Basicity, J. of the Korean Inst. of Met. & Mater. 36(3), pp.430-438.
  12. T. Funahashi, A. Kaikake, and T. Sugiura, 1998 : Recent Development of Waelz Kiln Process for EAF Dust Treatment at Sumitomo Shisaka Works, EPD Congress, pp.487-496.
  13. N. I. Moon, M. Hino, Y. Lee, et al., 1997 : Phase Equilibrium between Metallic Lead and PbO-FeOx-CaO-SiO2 or PbO-FeOx-CaO-SiO2-ZnO Slag at 1423K, J. of MMIJ, 113, pp.635-640. https://doi.org/10.2473/shigentosozai.113.635
  14. Changliang Shi, Shengnan Wang, Gan Cheng, 2020 : Dry Magnetic Separation Technology For The Recovery Of Iron Minerals in Fine-Grained Steel Slag, Engineering Review, 40(1), pp.7-16. https://doi.org/10.30765/er.40.1.02
  15. Noureddine Menad, Ndue Kanari, Maurice Save, 2014 : Recovery of high grade iron compounds from LD slag by enhanced magnetic separation techniques, International Journal of Mineral Processing, 126, pp.1-9. https://doi.org/10.1016/j.minpro.2013.11.001
  16. Shi, C.L., Zhang, Y.S., Jiao, H.G., 2010 : Development and analysis of permanent roll and drum magnetic separator, Mining Engineering, 8(4), pp.35-38.
  17. Carlos Alberto Caldas de Souza, Alexandre Teixeira Machado, Luiz Rogerio Pinho de Andrade Lima, et al., 2010 : Stabilization of Electric-Arc Furnace Dust in Concrete, Materials Research-IBERO-American Journal of Materials, 13(4), pp.513-519. https://doi.org/10.1590/S1516-14392010000400014
  18. A.Y. Mohamed, W. Park, D. Cho, 2020 : Chemical Structure and Magnetism of FeOx/Fe2O3 Interface Studied by X-ray Absorption Spectroscopy, Magnetochemistry, 6(33), pp.3390.
  19. W. Kwon, S. Lee, K. Chae, et al., 2009 : Growth of Fe3O4 Particles and Their Magnetic Properties, Journal of the Korean Magnetics Society, 19(5), pp.180-185. https://doi.org/10.4283/JKMS.2009.19.5.180