DOI QR코드

DOI QR Code

Association among Lifestyle and Risk Factors with SARS-CoV-2 Infection

  • Yi Ko (Department of Cardiology, Blackpool Victoria Hospital) ;
  • Zi-Ni Ngai (School of Health Science, International Medical University) ;
  • Rhun-Yian Koh (Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University) ;
  • Soi-Moi Chye (Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University)
  • 투고 : 2022.12.16
  • 심사 : 2022.12.25
  • 발행 : 2023.04.30

초록

Coronavirus disease 2019 (COVID-19) has become a major health burden worldwide, with over 600 million confirmed cases and 6 million deaths by 15 December 2022. Although the acute phase of COVID-19 management has been established, the long-term clinical course and complications due to the relatively short outbreak is yet to be assessed. The current COVID-19 pandemic is causing significant morbidity and mortality around the world. Interestingly, epidemiological studies have shown that fatality rates vary considerably across different countries, and men and elderly patients are at higher risk of developing severe diseases. There is increasing evidence that COVID-19 infection causes neurological deficits in a substantial proportion to patients suffering from acute respiratory distress syndrome. Furthermore, lack of physical activity and smoking are associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) susceptibility. We should therefore explore why lack of physical activity, smoking, etc causing a population more susceptible to SARS-CoV-2 infection, and mechanism involved. Thus, in this review article, we summarize epidemiological evidence related to risk factors and lifestyle that affect COVID-19 severity and the mechanism involved. These risk factors or lifestyle interventions include smoking, cardiovascular health, obesity, exercise, environmental pollution, psychosocial social stress, and diet.

키워드

참고문헌

  1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9.  https://doi.org/10.1001/jama.2020.1585
  2. Adhikari SP, Meng S, Wu YJ, Mao YP, Ye RX, Wang QZ, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty 2020;9:29. 
  3. Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020;92:568-76.  https://doi.org/10.1002/jmv.25748
  4. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schunemann HJ, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020;395:1973-87.  https://doi.org/10.1016/S0140-6736(20)31142-9
  5. Smith JC, Sausville EL, Girish V, Yuan ML, Vasudevan A, John KM, et al. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract. Dev Cell 2020;53:514-29.  https://doi.org/10.1016/j.devcel.2020.05.012
  6. Alqahtani JS, Oyelade T, Aldhahir AM, Alghamdi SM, Almehmadi M, Alqahtani AS, et al. Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: a rapid systematic review and meta-analysis. PLoS One 2020;15:e0233147. 
  7. Simons D, Shahab L, Brown J, Perski O. The association of smoking status with SARS-CoV-2 infection, hospitalization and mortality from COVID-19: a living rapid evidence review with Bayesian meta-analyses (version 7). Addiction 2021;116:1319-68.  https://doi.org/10.1111/add.15276
  8. Mei X, Lu R, Cui L, Tian Y, Zhao P, Li J. Poly I:C exacerbates airway inflammation and remodeling in cigarette smoke-exposed mice. Lung 2022;200:677-86.  https://doi.org/10.1007/s00408-022-00574-7
  9. Brake SJ, Barnsley K, Lu W, McAlinden KD, Eapen MS, Sohal SS. Smoking upregulates angiotensin-converting enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (Covid-19). J Clin Med 2020;9:841. 
  10. Saheb Sharif-Askari N, Saheb Sharif-Askari F, Alabed M, Temsah MH, Al Heialy S, Hamid Q, et al. Airways expression of SARS-CoV-2 receptor, ACE2, and TMPRSS2 is lower in children than adults and increases with smoking and COPD. Mol Ther Methods Clin Dev 2020;18:1-6.  https://doi.org/10.1016/j.omtm.2020.05.013
  11. Jean F, Stella K, Thomas L, Liu G, Xiang Y, Reason AJ, et al. Alpha1-antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. Proc Natl Acad Sci U S A 1998;95:7293-8.  https://doi.org/10.1073/pnas.95.13.7293
  12. Lee J, Taneja V, Vassallo R. Cigarette smoking and inflammation: cellular and molecular mechanisms. J Dent Res 2012;91:142-9.  https://doi.org/10.1177/0022034511421200
  13. De Cunto G, Lunghi B, Bartalesi B, Cavarra E, Fineschi S, Ulivieri C, et al. Severe reduction in number and function of peripheral T cells does not afford protection toward emphysema and bronchial remodeling induced in mice by cigarette smoke. Am J Pathol 2016;186:1814-24.  https://doi.org/10.1016/j.ajpath.2016.03.002
  14. Kaur G, Lungarella G, Rahman I. SARS-CoV-2 COVID-19 susceptibility and lung inflammatory storm by smoking and vaping. J Inflamm (Lond) 2020;17:21. 
  15. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020;181:1036-45.  https://doi.org/10.1016/j.cell.2020.04.026
  16. Archie SR, Cucullo L. Cerebrovascular and neurological dysfunction under the threat of COVID-19: is there a comorbid role for smoking and vaping? Int J Mol Sci 2020;21:3916. 
  17. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020;87:18-22.  https://doi.org/10.1016/j.bbi.2020.03.031
  18. Mazzone P, Tierney W, Hossain M, Puvenna V, Janigro D, Cucullo L. Pathophysiological impact of cigarette smoke exposure on the cerebrovascular system with a focus on the blood-brain barrier: expanding the awareness of smoking toxicity in an underappreciated area. Int J Environ Res Public Health 2010;7:4111-26.  https://doi.org/10.3390/ijerph7124111
  19. Russo P, Bonassi S, Giacconi R, Malavolta M, Tomino C, Maggi F. COVID-19 and smoking: is nicotine the hidden link? Eur Respir J 2020;55:2001116. 
  20. Rastogi S, Gala F, Kulkarni S, Gavali V. Neurological and neuroradiological patterns with COVID-19 infection in children: a single institutional study. Indian J Radiol Imaging 2022;32:510-22.  https://doi.org/10.1055/s-0042-1755250
  21. Kaisar MA, Villalba H, Prasad S, Liles T, Sifat AE, Sajja RK, et al. Offsetting the impact of smoking and e-cigarette vaping on the cerebrovascular system and stroke injury: is metformin a viable countermeasure? Redox Biol 2017;13:353-62.  https://doi.org/10.1016/j.redox.2017.06.006
  22. Shafi AM, Shaikh SA, Shirke MM, Iddawela S, Harky A. Cardiac manifestations in COVID-19 patients: a systematic review. J Card Surg 2020;35:1988-2008.  https://doi.org/10.1111/jocs.14808
  23. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46:846-8.  https://doi.org/10.1007/s00134-020-05991-x
  24. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020;5:802-10.  https://doi.org/10.1001/jamacardio.2020.0950
  25. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020;41:145-51. 
  26. Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res 2020;116:1666-87.  https://doi.org/10.1093/cvr/cvaa106
  27. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020;17:259-60.  https://doi.org/10.1038/s41569-020-0360-5
  28. Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl) 2020;133:1025-31.  https://doi.org/10.1097/CM9.0000000000000744
  29. Loperena R, Van Beusecum JP, Itani HA, Engel N, Laroumanie F, Xiao L, et al. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc Res 2018;114:1547-63.  https://doi.org/10.1093/cvr/cvy112
  30. Youn JC, Yu HT, Lim BJ, Koh MJ, Lee J, Chang DY, et al. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension 2013;62:126-33.  https://doi.org/10.1161/HYPERTENSIONAHA.113.00689
  31. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005;111:2605-10.  https://doi.org/10.1161/CIRCULATIONAHA.104.510461
  32. Yang J, Hu J, Zhu C. Obesity aggravates COVID-19: a systematic review and meta-analysis. J Med Virol 2021;93:257-61.  https://doi.org/10.1002/jmv.26237
  33. Singh R, Rathore SS, Khan H, Karale S, Chawla Y, Iqbal K, et al. Association of obesity with COVID-19 severity and mortality: an updated systemic review, meta-analysis, and meta-regression. Front Endocrinol 2022;13:780872. 
  34. Huttunen R, Syrjanen J. Obesity and the risk and outcome of infection. Int J Obes (Lond) 2013;37:333-40.  https://doi.org/10.1038/ijo.2012.62
  35. Honce R, Schultz-Cherry S. Impact of obesity on influenza a virus pathogenesis, immune response, and evolution. Front Immunol 2019;10:1071. 
  36. Rojas-Osornio SA, Cruz-Hernandez TR, Drago-Serrano ME, Campos-Rodriguez R. Immunity to influenza: impact of obesity. Obes Res Clin Pract 2019;13:419-29.  https://doi.org/10.1016/j.orcp.2019.05.003
  37. Sattar N, McInnes IB, McMurray JJV. Obesity is a risk factor for severe COVID-19 infection: multiple potential mechanisms. Circulation 2020;142:4-6.  https://doi.org/10.1161/CIRCULATIONAHA.120.047659
  38. Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty 2020;9:45. 
  39. Murugan AT, Sharma G. Obesity and respiratory diseases. Chron Respir Dis 2008;5:233-42.  https://doi.org/10.1177/1479972308096978
  40. Hamer M, Kivimaki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: a community-based cohort study of 387,109 adults in UK. Brain Behav Immun 2020;87:184-7.  https://doi.org/10.1016/j.bbi.2020.05.059
  41. Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. J Sport Health Sci 2019;8:201-17.  https://doi.org/10.1016/j.jshs.2018.09.009
  42. Senna SM, Torres MK, Lopes DA, Alheiros-Lira MC, de Moura DB, Pereira VR, et al. Moderate physical training attenuates perinatal low-protein-induced spleen lymphocyte apoptosis in endotoxemic adult offspring rats. Eur J Nutr 2016;55:1113-22.  https://doi.org/10.1007/s00394-015-0925-y
  43. Cao Dinh H, Beyer I, Mets T, Onyema OO, Njemini R, Renmans W, et al. Effects of physical exercise on markers of cellular immunosenescence: a systematic review. Calcif Tissue Int 2017;100:193-215.  https://doi.org/10.1007/s00223-016-0212-9
  44. Anderson E, Shivakumar G. Effects of exercise and physical activity on anxiety. Front Psychiatry 2013;4:27. 
  45. Setti L, Passarini F, De Gennaro G, Di Gilio A, Palmisani J, Buono P, et al. Relazione circa l'effetto dell'inquinamento da particolato atmosferico e la diffusione di virus nella popolazione [Internet]. Milano: Societa Italiana di Medicina Ambientale; 2020 [cited 2023 Jan 16]. Available from: https://www.actu-environnement.com/media/pdf/news35178-covid-19.pdf. 
  46. Li H, Xu XL, Dai DW, Huang ZY, Ma Z, Guan YJ. Air pollution and temperature are associated with increased COVID-19 incidence: a time series study. Int J Infect Dis 2020;97:278-82.  https://doi.org/10.1016/j.ijid.2020.05.076
  47. Bashir MF, Ma BJ, Bilal, Komal B, Bashir MA, Farooq TH, et al. Correlation between environmental pollution indicators and COVID-19 pandemic: a brief study in Californian context. Environ Res 2020;187:109652. 
  48. Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States: a nationwide cross-sectional study. medRxiv 2020 Apr 27 [Preprint]. https://doi.org/10.1101/2020.04.05.20054502. 
  49. Martelletti L, Martelletti P. Air pollution and the novel Covid-19 disease: a putative disease risk factor. SN Compr Clin Med 2020;2:383-7.  https://doi.org/10.1007/s42399-020-00274-4
  50. Xian M, Ma S, Wang K, Lou H, Wang Y, Zhang L, et al. Particulate matter 2.5 causes deficiency in barrier integrity in human nasal epithelial cells. Allergy Asthma Immunol Res 2020;12:56-71.  https://doi.org/10.4168/aair.2020.12.1.56
  51. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 2010;121:2331-78.  https://doi.org/10.1161/CIR.0b013e3181dbece1
  52. Ogen Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci Total Environ 2020;726:138605. 
  53. Ji X, Han M, Yun Y, Li G, Sang N. Acute nitrogen dioxide (NO2) exposure enhances airway inflammation via modulating Th1/Th2 differentiation and activating JAK-STAT pathway. Chemosphere 2015;120:722-8.  https://doi.org/10.1016/j.chemosphere.2014.10.039
  54. Shephard RJ, Shek PN. Cold exposure and immune function. Can J Physiol Pharmacol 1998;76:828-36.  https://doi.org/10.1139/y98-097
  55. Luo B, Liu J, Fei G, Han T, Zhang K, Wang L, et al. Impact of probable interaction of low temperature and ambient fine particulate matter on the function of rats alveolar macrophages. Environ Toxicol Pharmacol 2017;49:172-8.  https://doi.org/10.1016/j.etap.2016.12.011
  56. Davis MS, Malayer JR, Vandeventer L, Royer CM, McKenzie EC, Williamson KK. Cold weather exercise and airway cytokine expression. J Appl Physiol (1985) 2005;98:2132-6.  https://doi.org/10.1152/japplphysiol.01218.2004
  57. Batty GD, Deary IJ, Luciano M, Altschul DM, Kivimaki M, Gale CR. Psychosocial factors and hospitalisations for COVID-19: prospective cohort study based on a community sample. Brain Behav Immun 2020;89:569-78.  https://doi.org/10.1016/j.bbi.2020.06.021
  58. Wadhera RK, Wadhera P, Gaba P, Figueroa JF, Joynt Maddox KE, Yeh RW, et al. Variation in COVID-19 hospitalizations and deaths across New York City boroughs. JAMA 2020;323:2192-5.  https://doi.org/10.1001/jama.2020.7197
  59. Office for National Statistics. Deaths involving COVID-19 by local area and socioeconomic deprivation: deaths occurring between 1 March and 17 April 2020 [Internet]. Newport: Office for National Statistics; 2020 [cited 2023 Jan 16]. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsinvolvingcovid19bylocalareasanddeprivation/deathsoccurringbetween1marchand17april. 
  60. Raisi-Estabragh Z, McCracken C, Bethell MS, Cooper J, Cooper C, Caulfield MJ, et al. Greater risk of severe COVID-19 in Black, Asian and Minority Ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: study of 1326 cases from the UK Biobank. J Public Health (Oxf) 2020;42:451-60.  https://doi.org/10.1093/pubmed/fdaa095
  61. Peate I. Why are more BAME people dying from COVID-19? Br J Nurs 2020;29:545. 
  62. GOV.UK. Overcrowded households [Internet]. GOV.UK; 2020 [cited 2023 Jan 16]. Available from: https://www.ethnicity-facts-figures.service.gov.uk/housing/housing-conditions/overcrowded-households/latest. 
  63. Batty GD, Shipley MJ, Dundas R, Macintyre S, Der G, Mortensen LH, et al. Does IQ explain socio-economic differentials in total and cardiovascular disease mortality?: comparison with the explanatory power of traditional cardiovascular disease risk factors in the Vietnam Experience Study. Eur Heart J 2009;30:1903-9.  https://doi.org/10.1093/eurheartj/ehp254
  64. Blanquet M, Legrand A, Pelissier A, Mourgues C. Socio-economics status and metabolic syndrome: a meta-analysis. Diabetes Metab Syndr 2019;13:1805-12.  https://doi.org/10.1016/j.dsx.2019.04.003
  65. Li T, Zhang Y, Gong C, Wang J, Liu B, Shi L, et al. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur J Clin Nutr 2020;74:871-5.  https://doi.org/10.1038/s41430-020-0642-3
  66. Bousquet J, Anto JM, Iaccarino G, Czarlewski W, Haahtela T, Anto A, et al. Is diet partly responsible for differences in COVID-19 death rates between and within countries? Clin Transl Allergy 2020;10:16. 
  67. Butler MJ, Barrientos RM. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav Immun 2020;87:53-4.  https://doi.org/10.1016/j.bbi.2020.04.040
  68. Carpagnano GE, Di Lecce V, Quaranta VN, Zito A, Buonamico E, Capozza E, et al. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest 2021;44:765-71.  https://doi.org/10.1007/s40618-020-01370-x
  69. Rhodes JM, Subramanian S, Laird E, Griffin G, Kenny RA. Perspective: vitamin D deficiency and COVID-19 severity: plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. J Intern Med 2021;289:97-115.  https://doi.org/10.1111/joim.13149
  70. Rodriguez L, Cervantes E, Ortiz R. Malnutrition and gastrointestinal and respiratory infections in children: a public health problem. Int J Environ Res Public Health 2011;8:1174-205.  https://doi.org/10.3390/ijerph8041174
  71. Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system: working in harmony to reduce the risk of infection. Nutrients 2020;12:236. 
  72. Rogero MM, Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 2018;10:432. 
  73. Tashiro H, Takahashi K, Sadamatsu H, Kato G, Kurata K, Kimura S, et al. Saturated fatty acid increases lung macrophages and augments house dust mite-induced airway inflammation in mice fed with high-fat diet. Inflammation 2017;40:1072-86.  https://doi.org/10.1007/s10753-017-0550-4
  74. Green WD, Beck MA. Obesity impairs the adaptive immune response to influenza virus. Ann Am Thorac Soc 2017;14(Supplement_5):S406-9.  https://doi.org/10.1513/AnnalsATS.201706-447AW
  75. Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 2017;45:1105-15.  https://doi.org/10.1042/BST20160474
  76. Rubin LP, Ross AC, Stephensen CB, Bohn T, Tanumihardjo SA. Metabolic effects of inflammation on vitamin a and carotenoids in humans and animal models. Adv Nutr 2017;8:197-212.  https://doi.org/10.3945/an.116.014167
  77. Wannamethee SG, Lowe GD, Rumley A, Bruckdorfer KR, Whincup PH. Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis. Am J Clin Nutr 2006;83:567-74.  https://doi.org/10.1093/ajcn.83.3.567
  78. Khan N, Khymenets O, Urpi-Sarda M, Tulipani S, Garcia-Aloy M, Monagas M, et al. Cocoa polyphenols and inflammatory markers of cardiovascular disease. Nutrients 2014;6:844-80.  https://doi.org/10.3390/nu6020844
  79. Kaulmann A, Bohn T. Carotenoids, inflammation, and oxidative stress: implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 2014;34:907-29.  https://doi.org/10.1016/j.nutres.2014.07.010
  80. Tao N, Gao Y, Liu Y, Ge F. Carotenoids from the peel of Shatian pummelo (Citrus grandis Osbeck) and its antimicrobial activity. Am Eur J Agric Environ Sci 2010;7:110-5. 
  81. Kumar Singh A, Cabral C, Kumar R, Ganguly R, Kumar Rana H, Gupta A, et al. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019;11:2216. 
  82. Ganguly A, Sharma K, Majumder K. Food-derived bioactive peptides and their role in ameliorating hypertension and associated cardiovascular diseases. Adv Food Nutr Res 2019;89:165-207.  https://doi.org/10.1016/bs.afnr.2019.04.001
  83. Fan H, Liao W, Wu J. Molecular interactions, bioavailability, and cellular mechanisms of angiotensin-converting enzyme inhibitory peptides. J Food Biochem 2019;43:e12572. 
  84. Huang AF, Li H, Ke L, Yang C, Liu XY, Yang ZC, et al. Association of angiotensin-converting enzyme insertion/deletion polymorphism with susceptibility to systemic lupus erythematosus: a meta-analysis. Int J Rheum Dis 2018;21:447-57.  https://doi.org/10.1111/1756-185X.13236
  85. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020;12:988. 
  86. Dancer RC, Parekh D, Lax S, D'Souza V, Zheng S, Bassford CR, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 2015;70:617-24.  https://doi.org/10.1136/thoraxjnl-2014-206680
  87. Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol 2008;181:7090-9.  https://doi.org/10.4049/jimmunol.181.10.7090
  88. Tripathi S, Tecle T, Verma A, Crouch E, White M, Hartshorn KL. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J Gen Virol 2013;94(Pt 1):40-9.  https://doi.org/10.1099/vir.0.045013-0
  89. Chen Y, Zhang J, Ge X, Du J, Deb DK, Li YC. Vitamin D receptor inhibits nuclear factor κB activation by interacting with IκB kinase β protein. J Biol Chem 2013;288:19450-8.  https://doi.org/10.1074/jbc.M113.467670
  90. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004;25:280-8. https://doi.org/10.1016/j.it.2004.03.008