DOI QR코드

DOI QR Code

Host Blood Transcriptional Signatures as Candidate Biomarkers for Predicting Progression to Active Tuberculosis

  • Chang Ho Kim (Department of Internal Medicine, School of Medicine, Kyungpook National University) ;
  • Gahye Choi (Department of Internal Medicine, School of Medicine, Kyungpook National University) ;
  • Jaehee Lee (Department of Internal Medicine, School of Medicine, Kyungpook National University)
  • 투고 : 2022.11.16
  • 심사 : 2023.01.30
  • 발행 : 2023.04.30

초록

A recent understanding of the dynamic continuous spectrum of Mycobacterium tuberculosis infection has led to the recognition of incipient tuberculosis, which refers to the latent infection state that has begun to progress to active tuberculosis. The importance of early detection of these individuals with a high-risk of progression to active tuberculosis is emphasized to efficiently implement targeted tuberculosis preventive therapy. However, the tuberculin skin test or interferon-γ release assay, which is currently used for the diagnosis of latent tuberculosis infection, does not aid in the prediction of the risk of progression to active tuberculosis. Thus, a novel test is urgently needed. Recently, simultaneous and systematic analysis of differentially expressed genes using a high-throughput platform has enabled the discovery of key genes that may serve potential biomarkers for the diagnosis or prognosis of diseases. This host transcriptional investigation has been extended to the field of tuberculosis, providing promising results. The present review focuses on recent progress and challenges in the field of blood transcriptional signatures to predict progression to active tuberculosis.

키워드

참고문헌

  1. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 2013;45:1176-82.  https://doi.org/10.1038/ng.2744
  2. World Health Organization. Global tuberculosis report 2021 [Internet]. Geneva: World Health Organization; 2021 [cited 2023 Feb 9]. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021. 
  3. Furin J, Cox H, Pai M. Tuberculosis. Lancet 2019;393:1642-56.  https://doi.org/10.1016/S0140-6736(19)30308-3
  4. Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol 2018;18:575-89.  https://doi.org/10.1038/s41577-018-0025-3
  5. Getahun H, Matteelli A, Chaisson RE, Raviglione M. Latent Mycobacterium tuberculosis infection. N Engl J Med 2015;372:2127-35.  https://doi.org/10.1056/NEJMra1405427
  6. Mack U, Migliori GB, Sester M, Rieder HL, Ehlers S, Goletti D, et al. LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus statement. Eur Respir J 2009;33:956-73.  https://doi.org/10.1183/09031936.00120908
  7. Houben RM, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med 2016;13:e1002152. 
  8. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement: global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. JAMA 1999;282:677-86.  https://doi.org/10.1001/jama.282.7.677
  9. Esmail H, Barry CE, Young DB, Wilkinson RJ. The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci 2014;369:20130437. 
  10. Esmail H, Lai RP, Lesosky M, Wilkinson KA, Graham CM, Coussens AK, et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography. Nat Med 2016;22:1090-3.  https://doi.org/10.1038/nm.4161
  11. Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, et al. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin Microbiol Rev 2018;31:e00021-18. 
  12. Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Primers 2016;2:16076. 
  13. Lin PL, Flynn JL. Understanding latent tuberculosis: a moving target. J Immunol 2010;185:15-22.  https://doi.org/10.4049/jimmunol.0903856
  14. Lau A, Lin C, Barrie J, Winter C, Armstrong G, Egedahl ML, et al. The radiographic and mycobacteriologic correlates of subclinical pulmonary TB in Canada: a retrospective cohort study. Chest 2022;162:309-20.  https://doi.org/10.1016/j.chest.2022.01.047
  15. Barry CE, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 2009;7:845-55.  https://doi.org/10.1038/nrmicro2236
  16. World Health Organization. Development of a target product profile (TPP) and a framework for evaluation for a test for predicting progression from tuberculosis infection to active disease [Internet]. Geneva: World Health Organization; 2017 [cited 2023 Feb 9]. Available from: https://apps.who.int/iris/handle/10665/259176. 
  17. Getahun H, Matteelli A, Abubakar I, Hauer B, Pontali E, Migliori GB. Advancing global programmatic management of latent tuberculosis infection for at risk populations. Eur Respir J 2016;47:1327-30.  https://doi.org/10.1183/13993003.00449-2016
  18. Schumacher SG, Denkinger CM. Diagnostic test for incipient tuberculosis: a step forward, many more to go. Am J Respir Crit Care Med 2018;197:1106-7.  https://doi.org/10.1164/rccm.201803-0469ED
  19. Nikolova M, Markova R, Drenska R, Muhtarova M, Todorova Y, Dimitrov V, et al. Antigen-specific CD4- and CD8-positive signatures in different phases of Mycobacterium tuberculosis infection. Diagn Microbiol Infect Dis 2013;75:277-81.  https://doi.org/10.1016/j.diagmicrobio.2012.11.023
  20. Halliday A, Whitworth H, Kottoor SH, Niazi U, Menzies S, Kunst H, et al. Stratification of latent Mycobacterium tuberculosis infection by cellular immune profiling. J Infect Dis 2017;215:1480-7.  https://doi.org/10.1093/infdis/jix107
  21. Mpande CA, Musvosvi M, Rozot V, Mosito B, Reid TD, Schreuder C, et al. Antigen-specific T-cell activation distinguishes between recent and remote tuberculosis infection. Am J Respir Crit Care Med 2021;203:1556-65.  https://doi.org/10.1164/rccm.202007-2686OC
  22. Petruccioli E, Scriba TJ, Petrone L, Hatherill M, Cirillo DM, Joosten SA, et al. Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis. Eur Respir J 2016;48:1751-63.  https://doi.org/10.1183/13993003.01012-2016
  23. Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S, Amon LM, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 2016;387:2312-22.  https://doi.org/10.1016/S0140-6736(15)01316-1
  24. Suliman S, Thompson EG, Sutherland J, Weiner J, Ota MO, Shankar S, et al. Four-gene pan-African blood signature predicts progression to tuberculosis. Am J Respir Crit Care Med 2018;197:1198-208.  https://doi.org/10.1164/rccm.201711-2340OC
  25. Gupta RK, Turner CT, Venturini C, Esmail H, Rangaka MX, Copas A, et al. Concise whole blood transcriptional signatures for incipient tuberculosis: a systematic review and patient-level pooled meta-analysis. Lancet Respir Med 2020;8:395-406.  https://doi.org/10.1016/S2213-2600(19)30282-6
  26. Roe J, Venturini C, Gupta RK, Gurry C, Chain BM, Sun Y, et al. Blood transcriptomic stratification of short-term risk in contacts of tuberculosis. Clin Infect Dis 2020;70:731-7.  https://doi.org/10.1093/cid/ciz252
  27. Scriba TJ, Fiore-Gartland A, Penn-Nicholson A, Mulenga H, Kimbung Mbandi S, Borate B, et al. Biomarker-guided tuberculosis preventive therapy (CORTIS): a randomised controlled trial. Lancet Infect Dis 2021;21:354-65.  https://doi.org/10.1016/S1473-3099(20)30914-2
  28. Mendelsohn SC, Fiore-Gartland A, Penn-Nicholson A, Mulenga H, Mbandi SK, Borate B, et al. Validation of a host blood transcriptomic biomarker for pulmonary tuberculosis in people living with HIV: a prospective diagnostic and prognostic accuracy study. Lancet Glob Health 2021;9:e841-53.  https://doi.org/10.1016/S2214-109X(21)00045-0
  29. Sutherland JS, van der Spuy G, Gindeh A, Thuong NT, Namuganga A, Owolabi O, et al. Diagnostic accuracy of the cepheid 3-gene host response fingerstick blood test in a prospective, multi-site study: interim results. Clin Infect Dis 2022;74:2136-41.  https://doi.org/10.1093/cid/ciab839
  30. Singhania A, Wilkinson RJ, Rodrigue M, Haldar P, O'Garra A. The value of transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis. Nat Immunol 2018;19:1159-68.  https://doi.org/10.1038/s41590-018-0225-9
  31. Abubakar I, Drobniewski F, Southern J, Sitch AJ, Jackson C, Lipman M, et al. Prognostic value of interferon-γ release assays and tuberculin skin test in predicting the development of active tuberculosis (UK PREDICT TB): a prospective cohort study. Lancet Infect Dis 2018;18:1077-87.  https://doi.org/10.1016/S1473-3099(18)30355-4
  32. Zellweger JP, Sotgiu G, Block M, Dore S, Altet N, Blunschi R, et al. Risk assessment of tuberculosis in contacts by IFN-γ release assays: a Tuberculosis Network European Trials Group study. Am J Respir Crit Care Med 2015;191:1176-84.  https://doi.org/10.1164/rccm.201502-0232OC
  33. Diel R, Loddenkemper R, Nienhaus A. Predictive value of interferon-γ release assays and tuberculin skin testing for progression from latent TB infection to disease state: a meta-analysis. Chest 2012;142:63-75.  https://doi.org/10.1378/chest.11-3157
  34. Sumner T, Scriba TJ, Penn-Nicholson A, Hatherill M, White RG. Potential population level impact on tuberculosis incidence of using an mRNA expression signature correlate-of-risk test to target tuberculosis preventive therapy. Sci Rep 2019;9:11126. 
  35. Gliddon HD, Herberg JA, Levin M, Kaforou M. Genome-wide host RNA signatures of infectious diseases: discovery and clinical translation. Immunology 2018;153:171-8.  https://doi.org/10.1111/imm.12841
  36. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531-7.  https://doi.org/10.1126/science.286.5439.531
  37. Chaussabel D, Pascual V, Banchereau J. Assessing the human immune system through blood transcriptomics. BMC Biol 2010;8:84. 
  38. Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A. Transcriptome profiling in human diseases: new advances and perspectives. Int J Mol Sci 2017;18:1652. 
  39. Blankley S, Berry MP, Graham CM, Bloom CI, Lipman M, O'Garra A. The application of transcriptional blood signatures to enhance our understanding of the host response to infection: the example of tuberculosis. Philos Trans R Soc Lond B Biol Sci 2014;369:20130427. 
  40. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010;466:973-7.  https://doi.org/10.1038/nature09247
  41. Walzl G, McNerney R, du Plessis N, Bates M, McHugh TD, Chegou NN, et al. Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis 2018;18:e199-210.  https://doi.org/10.1016/S1473-3099(18)30111-7
  42. Hamada Y, Penn-Nicholson A, Krishnan S, Cirillo DM, Matteelli A, Wyss R, et al. Are mRNA based transcriptomic signatures ready for diagnosing tuberculosis in the clinic? A review of evidence and the technological landscape. EBioMedicine 2022;82:104174. 
  43. Anderson ST, Kaforou M, Brent AJ, Wright VJ, Banwell CM, Chagaluka G, et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med 2014;370:1712-23.  https://doi.org/10.1056/NEJMoa1303657
  44. Sweeney TE, Braviak L, Tato CM, Khatri P. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med 2016;4:213-24.  https://doi.org/10.1016/S2213-2600(16)00048-5
  45. Mendelsohn SC, Mbandi SK, Fiore - Gartland A , Penn-Nicholson A, Musvosvi M, Mulenga H, et al. Prospective multicentre head-to-head validation of host blood transcriptomic biomarkers for pulmonary tuberculosis by real-time PCR. Commun Med (Lond) 2022;2:26.