DOI QR코드

DOI QR Code

Rethinking the Knowledge Viewpoint in Practice-Oriented Science Education and its Relationship with Scientific Modeling

실행-중심 과학교육을 위한 지식관의 재고와 과학적 모델링의 연관성

  • 이혜경 (서울대학교 교육종합연구원) ;
  • 이종혁 (서울대학교 교육종합연구원) ;
  • 최진현 (서울대학교 대학원) ;
  • 김관영 (서울대학교 대학원) ;
  • 이선경 (서울대학교 교육종합연구원)
  • Received : 2023.05.03
  • Accepted : 2023.05.10
  • Published : 2023.05.31

Abstract

This study explored how scientific practice functions within practice-oriented science education and reviewed modeling as a unit of practice. Beginning with the questions "What is scientific practice and what is the nature of knowledge?" and "How does scientific practice work?" we reconsidered the language-centered view of knowledge and identified its relevance to scientific modeling. First, concentrating on the complexity and nonlinearity of scientific practice, scientific knowledge was considered to be the activity or action itself. We expanded the understanding of the nature of knowledge beyond the explicit and language-oriented dimension of activity or action to an implicit dimension that encompasses skills, connoisseurship, and judgment. Furthermore, we discussed the nature and meaning of scientific modeling as a unit of practice that accounts for the complexity and nonlinear dynamics of scientific practice; scientific modeling was one such unit that could contain complex practice and nonlinear dynamics. Additionally, the contextual properties and meanings of modeling that function were highlighted. Scientific modeling was understood as the process of mediating or autonomously referencing and adjusting theory and phenomena, including a layered and dynamic construction of related concepts, analogies, metaphors, skills, connoisseurship, and judgments as explicit or implicit knowledge. We suggest that "teaching and learning science as practice" should be a concrete modeling activity that is epistemologically and ontologically intertwined with actual science education practices.

본 연구는 실행-기반 과학교육을 위하여, 과학적 실행이 무엇이며 어떻게 작동하는가를 이해하고 실행의 단위로서 모델링을 검토하였다. 이를 위하여, '과학적 실행은 무엇이며, 이때 지식은 어떤 특징을 가지는가?'와 '과학적 실행은 어떻게 작동하는가?'라는 질문을 출발로 하여 언어 중심의 지식관을 재고하고 과학적 실행과 과학적 모델링의 연관성을 탐색하였다. 이를 위하여 먼저, 과학적 '실행'이 갖는 복잡성과 비선형성에 주목하면서 과학적 지식을 활동이나 행동 그 자체로서 바라보았다. 즉, 언어 중심의 명시적 차원을 넘어 솜씨와 감식력 그리고 판단을 포괄하는 암묵적 차원으로 확장하였다. 다음으로, 과학적 실행의 복잡성과 비선형적 역동성을 담아내는 실행의 단위로서 특정 목적과 맥락에서 구체적으로 작동하는 모델링의 속성과 의미를 논하고, 구조화된 모델링과 비구조화된 모델링의 양상을 살펴보았다. 모델링은 이론과 현상을 매개하거나 혹은 자율적으로 이론을 참조하고 조정하는 과정으로서, 그 내용으로는 명시적 및 암묵적 지식으로서 관련 개념, 비유, 은유, 솜씨, 감식력, 판단 등이 중층적이고 역동적으로 구성되는 과정이다. 최종적으로 '과학교과를 실행으로서 가르치고 배우는 것'이 실제 과학교육 현장에서 인식론적이고 존재론적으로 얽힌 구체적인 모델링 활동이 되어야 한다고 보았다. 이러한 과학적 실행에서의 지식관과 모델링에 관한 논의를 토대로 과학 교수·학습에의 실천적 지침을 제언하였다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R1I1A1A01066598)

References

  1. 강경희, 이선경(2001). 개념변화 맥락을 구성하는 개념생태 상호작용에 관한 사례 연구. 한국과학교육학회지, 21(4), 745-756. 
  2. 강은희, 김찬종, 최승언, 유준희, 박현주, 이신영, 김희백(2012). 심장 혈액 흐름의 모형 구성 과정에서 나타난 소집단 상호작용과 소집단 규범. 한국과학교육학회지, 32(2), 372-387.  https://doi.org/10.14697/JKASE.2012.32.2.372
  3. 고영준(2012). 교육적 경험의 의미: 오우크쇼트와 듀이의 관점. 교육철학연구, 34(1), 23-43.  https://doi.org/10.15754/JKPE.2012.34.1.002
  4. 교육부(2015). 과학과 교육과정. 세종: 교육부. 
  5. 구리나(2011). 비트겐슈타인 철학의 교육학적 함의. 서울대학교 대학원 박사학위논문. 
  6. 구리나(2014). 비트겐슈타인의 언어적 전회와 확실성: [확실성에 관하여]를 중심으로. 교육철학연구, 36(3), 1-23.  https://doi.org/10.15754/JKPE.2014.36.3.001001
  7. 김관영, 이종혁, 최진현, 전상학, 이선경(2022a). 학생의 자유 탐구 활동의 사례 분석을 통해 본 실험 모델링의 특징과 과학교육적 의미. 한국과학교육학회지, 42(2), 201-214.  https://doi.org/10.14697/JKASE.2022.42.2.201
  8. 김관영, 이종혁, 최진현, 전상학, 이혜경, 이선경(2022b). 과학적 실행에서의 데이터 모델링 탐색: 현상의 생성과 증거를 만드는 과정을 중심으로. 생물교육, 50(4). 529-542.  https://doi.org/10.15717/BIOEDU.2022.50.4.529
  9. 김만희(2003). 폴라니의 인식론에 근거한 과학교수의 내러티브적 성격 고찰. 한국교원대학교 대학원 박사학위논문. 
  10. 김미경, 김희백(2008). 개방적 참탐구 활동에서 학생들의 과학의 본성에 대한 이해에 영향을 미치는 요인 탐색. 한국과학교육학회지, 28(6), 565-578.  https://doi.org/10.14697/JKASE.2008.28.6.565
  11. 김영민(1994). 글쓰기, 복잡성의 철학의 해석학을 위하여. 오늘의 문예비평, 12, 77-104. 
  12. 김지윤, 최승언, 김찬종(2016). 공동생성적 대화가 중학생의 과학적 모델에 관한 이해와 모델 구성에 미치는 영향. 한국지구과학회지, 37(4), 243-268. 
  13. 노철현(2011). 교육내용으로서의 '지식의 형식'의 의미: 오우크쇼트의 관점을 중심으로. 한국초등교육, 22(1), 159-180.  https://doi.org/10.20972/KJEE.22.1.201104.159
  14. 박희경, 최종림, 김찬종, 김희백, 유준희, 장신호, 최승언(2016). 과학적 모델의 사회적 구성 수업을 통한 과학영재 학생들의 모델링 능력 변화. 한국과학교육학회지, 36(1), 15-28.  https://doi.org/10.14697/JKASE.2016.36.1.0015
  15. 신명경, 권경필(2016). 에너지 관련 중등 과학 교과서 단원의 과학 실행(Science Practice) 특징 탐색. 에너지기후변화교육, 6, 185-197.  https://doi.org/10.22368/KSECCE.2016.6.2.185
  16. 양찬호, 김수현, 조민진, 노태희(2016). 물질의 입자성에 대한 모형 구성 과정에서 나타나는 소집단 토론과 전체 학급 토론의 특징. 한국과학교육학회지, 36(3), 361-369.  https://doi.org/10.14697/JKASE.2016.36.3.0361
  17. 오필석(2020). 과학 교육에서 기능 중심의 과학 탐구에 대한 비판적 고찰. 한국과학교육학회지, 40(2), 141-150.  https://doi.org/10.14697/JKASE.2020.40.2.141
  18. 유금복, 이종혁, 이선경(2022). 행위자-네트워크 이론으로 본 과학적 실행의 현상 생성 사례. 교과교육학연구, 26, 179-190.  https://doi.org/10.24231/RICI.2022.26.2.179
  19. 이선경, 신명경(2023). 학교 과학 교육 담론. 서울: 북스힐. 
  20. 이선경, 손정우, 김종희, 박종석, 서혜애, 심규철, 최재혁(2013). 고등학교 과학수업 사례 분석을 통한 학교 과학 탐구의 특징. 한국과학교육학회지, 33(2), 284-309.  https://doi.org/10.14697/JKASE.2013.33.2.284
  21. 이신영, 김찬종, 최승언, 유준희, 박현주, 강은희, 김희백(2012). 소집단 상호작용에 따른 심장 내 혈액 흐름에 대한 소집단 모델 발달 유형과 추론 과정 탐색. 한국과학교육학회지, 32(5), 805-822.  https://doi.org/10.14697/JKASE.2012.32.5.805
  22. 이종봉(2018). 과학교육에서의 지식개념에 대한 비판적 검토: Giere의 모형 기반 과학철학을 중심으로. 서울대학교 대학원 박사학위논문. 
  23. 이차은, 김희백(2016). 과학적 모형 구성 과정에서 나타난 사고 질문의 개념적 자원 활성화의 이해-인식론적 프레이밍과 위치 짓기 프레이밍을 중심으로. 한국과학교육학회지, 36(3), 471-483.  https://doi.org/10.14697/JKASE.2016.36.3.0471
  24. 장하석(2015). 과학, 철학을 만나다. 지식 플러스. 
  25. 장하석(2021). 물은 H2O인가? 증거, 실재론, 다원주의. (전대호 역). 파주: 김영사. (원서는 2012년). 
  26. 정용재(2020). '설다'와 '익다'의 너나들이: 이종네트워크로서 과학학습. 한국과학교육학회지, 40(6), 631-648.  https://doi.org/10.14697/JKASE.2020.40.6.631
  27. 정용욱(2014). 법칙, 이론, 그리고 원리: 규범적 의미와 실제사용에서의 혼란. 한국과학교육학회지, 34(5), 459-468.  https://doi.org/10.14697/JKASE.2014.34.5.0459
  28. 조혜숙, 남정희(2017). 과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석. 한국과학교육학회지, 37(4), 539-552.  https://doi.org/10.14697/JKASE.2017.37.4.539
  29. 조희형(1992). 과학적 탐구의 본질에 대한 분석 및 탐구력 신장을 위한 학습지도 방법에 대한 연구. 한국과학교육학회지, 12(1), 61-73. 
  30. 한기철, 곽덕주, 김상섭(2010). 교육철학 방법으로서의 프래그머티즘 재음미: 프랙티스의 교육적 의미를 중심으로. 교육사상연구, 24(1), 177-203.  https://doi.org/10.17283/JKEDI.2010.24.1.177
  31. Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H.-L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419.  https://doi.org/10.1002/sce.10118
  32. Bailer-Jones, D. M. (2009). Scientific models in philosophy of science. University of Pittsburgh Press. 
  33. Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2016). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(7), 1082-1112.  https://doi.org/10.1002/tea.21257
  34. Bikner-Ahsbahs, A. (2009). Networking of theories-why and how? Special plenary lecture. In V. Durand-Guerrier, S. Soury-Lavergne, & S. Lecluse (Eds.), Proceedings of CERME6. http://www.inrp.fr/publications/edition-electronique/cerme6/plenary-01-bikner.pdf 
  35. Bikner-Ahsbahs, A., Bakker, A., Johnson, H. L., & Chan, E. (2019). Introduction to the thematic working group 17 on theoretical perspectives and approaches in mathematics education research of CERME11. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of CERME11. (pp. 3020-3027). Utrecht, NL: Utrecht University. 
  36. Boumans, M. (1999). Built-in justification. In M. S. Morgan & M. Morrison (Eds.), Models as mediators (pp. 66-96). NY: Cambridge University Press. 
  37. Callon, M. (1986). Some elements of a sociology of translation: Domestication of the scallops and the fishermen of St brieuc bay. In J. Law (Ed.), Power, action and belief: A new sociology of knowledge (pp. 196-233). London: Routledge & Kegan Paul. 
  38. Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). "An experiment is when you try it and see if it works": A study of grade 7 students' understanding of the construction of scientific knowledge. International Journal of Science Education, 11, 514-529.  https://doi.org/10.1080/0950069890110504
  39. Chinn, C. A., & Melhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218.  https://doi.org/10.1002/sce.10001
  40. Chiu, M. H. & Lin, J. W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1-12. https://doi.org/10.1186/s43031-019-0012-y 
  41. Crawford, B. A. (2014). From inquiry to scientific practices in the science classroom. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, Volume II (pp. 529-556). Routledge. 
  42. Dewey, J. (1987). Democracy and education (Lee, H. Trans.). Paju: Kyoyookbook. (Original work published 1916). 
  43. Dewey, J. (2002). The child and the curriculum (Park, C. Trans.). Seoul: Moonumsa. (Original work published 1902). 
  44. Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 365-395). The MIT Press. 
  45. Duschl, A. R., Schweingruber, A. H., & Shouse, W. A. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington DC: The National Academies Press. 
  46. Engestrom, Y., & Sannino, A. (2021). From mediated actions to heterogenous coalitions: Four generations of activity-theoretical studies of work and learning. Mind, Culture, and Activity, 28(1), 4-23.  https://doi.org/10.1080/10749039.2020.1806328
  47. Flick, L. B., & Lederman, N. G. (2006). Science inquiry and nature of science implications for teaching, learning, and teacher education. Dordrecht: Springer. 
  48. Ford, M. J. (2015). Educational implications of choosing practice to describe science in the next generation science standards. Science Education, 99(6), 1041-1048.  https://doi.org/10.1002/sce.21188
  49. Furtak, E. M., & Penuel, W. R. (2019). Coming to terms: Addressing the persistence of "hands-on" and other reform terminology in the era of science as practice. Science Education, 103(1), 167-186.  https://doi.org/10.1002/sce.21488
  50. Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press. 
  51. Garcia-Mila, M., & Anderson, C. (2008). Cognitive foundations of learning argumentation. In S. Erduran, & M. P. Jimenz-Alexandre (Eds.), Argumentation in science education (pp. 29-45). UK: Springer. 
  52. Giere, R. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press. 
  53. Giere, R. (2018). Models of experiments. In I. F. Peschard & B. C. van Fraassen (Eds.), The experimental side of modeling (pp. 59-70). MN: University of Minnesota Press. 
  54. Giere, R., Bickle, J., & Maudlin, F. (2006). Understanding scientific reasoning. Ontario: Thomson Wadsworth. 
  55. Gilbert, J. K., Boutler, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boutler (Eds.), Developing models in science education (pp. 3-19). Dordrecht: Kluwer Academic Publishers. 
  56. Grandy, R., & Duschl, R. A. (2007). Reconsidering the character and role of inquiry in school science: Analysis of a conference. Science & Education, 16. 141-166.  https://doi.org/10.1007/s11191-005-2865-z
  57. Halloun, I. A. (2006). Modeling theory in science education. Dordrecht: Springer. 
  58. Hardahl, L. K., Wickman, P. O., & Calman, C. (2019). The body and the production of phenomena in the science laboratory. Science & Education, 28, 865-895.  https://doi.org/10.1007/s11191-019-00063-z
  59. Harvard-Smithsonian Center for Astrophysics (1997). Minds of our own: Can we believe our eyes? [Videotape]. Annenberg Foundation. 
  60. Havdala, R., & Ashkenazi, G. (2007). Coordination of theory and evidence: Effect of epistemological theories on students' laboratory practice. Journal of Research in Science Teaching, 44(8), 1134-1159.  https://doi.org/10.1002/tea.20215
  61. Heidegger, M. (1962). Being and time (J. Macquarrie & E. Robinson, Trans.). New York: Haroer & Row. 
  62. Hesse, M. (1963). Models and analogies in science. London: Sheed and Ward. 
  63. Hestenes, D. (1992). Modeling games in the Newtonian world. American Journal of Physics, 60(8), 732-748.  https://doi.org/10.1119/1.17080
  64. Hodson, D. (2009). Teaching and learning about science. The Netherlands: Sense Publishers. 
  65. Irzik, G., & Nola, R. (2010). A family resemblance approach to the nature of science for science education. Science & Education, 20(7), 591-607.  https://doi.org/10.1007/s11191-010-9293-4
  66. Jimenez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In M. P. Jimenez-Aleixandre & S. Erduran (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp.3-27). Dordrecht: Springer. 
  67. Khishfe, R., & Abd-El-Khalick, F. (2002). The influence of explicit reflective versus implicit inquiry-oriented instruction on sixth graders' views of nature of science. Journal of Research in Science Teaching, 39(7), 551-578.  https://doi.org/10.1002/tea.10036
  68. Kuhn, D., Amsel, E., & O'Loughlin, M. (1988). The development of scientific thinking skills. San Diego, CA: Academic Press. 
  69. Kuhn, D., & Franklin, S. (2006). The second decade: What develops (and how)? In W. Damon, & R. M. Lerner (Series Eds.), Handbook of child psychology: Vol. 2, Cognition, perception, and language (6th ed., pp. 953-993). Hoboken, NJ: Wiley. 
  70. Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: University of Chicago Press. 
  71. Kwant, R. C. (1963). The phenomenological philosophy of Merleau-Ponty. Pittsburgh: Duquesne University Press. 
  72. Ladyman, J. (2012). Understanding philosophy of science. Routledge. 
  73. Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press. 
  74. Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, MA: Harvard University Press. 
  75. Latour, B. (2009). We have never been modern (Hong, C. Trans.). Seoul: Galmuri. (Original work published 1991). 
  76. Leach, J. (1998). Teaching about the world of science in the laboratory: The influence on teaching of student's ideas. In Wellington, J. J. (ed.), Practical work in school science: Which way now? (pp. 52-68). NY: Routledge. 
  77. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature science. Journal of Research in Science Teaching, 39(6), 497-521.  https://doi.org/10.1002/tea.10034
  78. Lehrer, R., & Schauble, L. (2015). The development of scientific thinking. In R. M. Lerner (Ed.), Handbook of child psychology and developmental science (pp. 1-44). Hoboken: Wiley. 
  79. Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39(1), 57-68.  https://doi.org/10.1207/s15326985ep3901_6
  80. Lynch, M. (1985). Art and artifacts in laboratory science: A study of shop work and shop talk in a research laboratory. Routledge & Kegan Paul. 
  81. Manz, E. (2015). Representing student argumentation as functionally emergent from scientific activity. Review of Educational Research, 85(4), 553-590.  https://doi.org/10.3102/0034654314558490
  82. Matthews, E. (1999). Twentieth-century French philosophy. Philosophical Quarterly, 49(195), 281-283. 
  83. Matthews, M. R. (2007). Models in science and in science education: An introduction. Science & Education, 16, 647-652.  https://doi.org/10.1007/s11191-007-9089-3
  84. McComas, W. F., Clough, M. P., & Almazroa, H. (1998). The role and character of the nature of science in science education. In W. McComas (Ed.), The nature of science education (pp. 3-39). Los Angeles: Kluwer Academic Publisher. 
  85. McNeill, K. L. (2011). Elementary students' views of explanation, argumentation and evidence, and their abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48, 793-823.  https://doi.org/10.1002/tea.20430
  86. Mendonca, P. C. C., & Justi, R. (2011). Contributions of the model of modelling diagram to the learning of ionic bonding: Analysis of a case study. Research in Science Education, 41(4), 479-503.  https://doi.org/10.1007/s11165-010-9176-3
  87. Merleau-Ponty, M. (2013). Phenomenology of perception. Routledge. 
  88. Millar, R. (1998). Rhetoric and reality: What practical work in science education is really for. In J. Wellington (ed.), Practical work in school science: Which way now? (pp. 16-31). London: Routledge. 
  89. Miller, E., Manz, E., Russ, R., Stroupe, D., & Berland, L. (2018). Addressing the epistemic elephant in the room: Epistemic agency and the next generation science standards. Journal of Research in Science Teaching, 55(7), 1053-1075.  https://doi.org/10.1002/tea.21459
  90. Morgan, M. S., & Morrison, M. (1999). Models as mediators: Perspectives on natural and social science. Cambridge University Press. 
  91. Nagel, E. (1960). Logic without metaphysics. Philosophy, 35(132), 81-83.  https://doi.org/10.1017/S0031819100037864
  92. National Research Council. (1996). National science education standards. Washington, D.C.: National Academy Press. 
  93. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, D.C.: National Academies Press. 
  94. NGSS Lead States. (2013). Next generation science education standards: For states, by states. Washington, D.C.: The Academies Press. 
  95. Oakeshott, M. (1992). Learning and teaching (Cha, M. Ttrans.). gyoyugjinheung (spring-summer), 126-143, 155-169. (Original work published 1967). 
  96. O'Hara, J. G., & Pricha, W. (1987). Hertz and the Maxwellians: A study and documentation of the discovery of electromagnetic wave radiation. London: Peter Peregrinus Ltd. 
  97. Paavola, S., & Hakkarainen, K. (2005). The knowledge creation metaphor: An emergent epistemological approach to learning. Science & Education, 14(6), 535-557.  https://doi.org/10.1007/s11191-004-5157-0
  98. Passmore, C., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554.  https://doi.org/10.1080/09500693.2011.577842
  99. Pickering, A. (1995). The mangle of practice: Time, agency, and science. Chicago: University of Chicago Press. 
  100. Pierson, A. E., & Clark, D. B. (2019). Sedimentation of modeling practices. Science & Education, 28, 897-925.  https://doi.org/10.1007/s11191-019-00050-4
  101. Pierson, A. E., Clark, D. B., & Kelly, G. J. (2019). Learning progressions and science practices. Science & Education, 28, 833-841.  https://doi.org/10.1007/s11191-019-00070-0
  102. Pierson, A. E., Clark, D. B., & Sherard, M. K. (2017). Learning progressions in context: Tensions and insights from a semester-long middle school modeling curriculum. Science Education, 101(6), 1061-1088.  https://doi.org/10.1002/sce.21314
  103. Polanyi, M. (1958). Personal knowledge. Chicago: University of Chicago Press. 
  104. Polanyi, M. (1969). Knowing and being. Routledge and Kegan Paul. 
  105. Potts, L. (2008). Diagramming with actor-network theory: A method for modeling holistic experience. Paper presented in 2008 International Conference on Professional Communication. 
  106. Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: First steps towards a conceptual framework. ZDM International Journal on Mathematics Education, 40(2), 165-178.  https://doi.org/10.1007/s11858-008-0086-z
  107. Rea-Ramirez, M. A., Clement, J., & Nunez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In J. J. Clement & M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science (pp. 23-43). The Netherlands: Springer. 
  108. Rouse, J. (2007). Practice theory. In S. Turner & M. Risjord (Eds.), Handbook of the philosophy of science Vol 15: Philosophy of anthropology and sociology (pp. 630-681). Dordrecht: Elsevier. 
  109. Rudolph, J. L. (2005). Inquiry, instrumentalism, and the public understanding of science. Science Education, 89, 803-821.  https://doi.org/10.1002/sce.20071
  110. Schank, R. C., & Abelson, P. A. (1977). Scripts, plans, goals, and understanding: An inquiry into human knowledge structures. Psychology Press. 
  111. Sikorski, T. R. (2019). Context-dependent "upper anchors" for learning progressions. Science & Education, 28, 957-981.  https://doi.org/10.1007/s11191-019-00074-w
  112. Suppe, F. (Ed.). (1977). The structure of scientific theories. University of Illinois Press. 
  113. Svoboda, J., & Passmore, C. (2013). The strategies of modeling in biology education. Science & Education, 22, 119-142.  https://doi.org/10.1007/s11191-011-9425-5
  114. Wellington, J. (1998). Practical work in science: Time for a reappraisal. In Wellington, J. J. (Ed.), Practical work in school science: Which way now? (pp. 3-15). NY: Routledge. 
  115. Wittgenstein, L. (1953). The philosophical investigations. Oxford: Blackwell. 
  116. Woolnough, B. E. (1989). Towards a holistic view of process in science education. In J. J. Wellington, Skills and processes in science education (pp. 115-134). London: Routledge.