Acknowledgement
이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R1I1A1A01066598)
References
- 강경희, 이선경(2001). 개념변화 맥락을 구성하는 개념생태 상호작용에 관한 사례 연구. 한국과학교육학회지, 21(4), 745-756.
- 강은희, 김찬종, 최승언, 유준희, 박현주, 이신영, 김희백(2012). 심장 혈액 흐름의 모형 구성 과정에서 나타난 소집단 상호작용과 소집단 규범. 한국과학교육학회지, 32(2), 372-387. https://doi.org/10.14697/JKASE.2012.32.2.372
- 고영준(2012). 교육적 경험의 의미: 오우크쇼트와 듀이의 관점. 교육철학연구, 34(1), 23-43. https://doi.org/10.15754/JKPE.2012.34.1.002
- 교육부(2015). 과학과 교육과정. 세종: 교육부.
- 구리나(2011). 비트겐슈타인 철학의 교육학적 함의. 서울대학교 대학원 박사학위논문.
- 구리나(2014). 비트겐슈타인의 언어적 전회와 확실성: [확실성에 관하여]를 중심으로. 교육철학연구, 36(3), 1-23. https://doi.org/10.15754/JKPE.2014.36.3.001001
- 김관영, 이종혁, 최진현, 전상학, 이선경(2022a). 학생의 자유 탐구 활동의 사례 분석을 통해 본 실험 모델링의 특징과 과학교육적 의미. 한국과학교육학회지, 42(2), 201-214. https://doi.org/10.14697/JKASE.2022.42.2.201
- 김관영, 이종혁, 최진현, 전상학, 이혜경, 이선경(2022b). 과학적 실행에서의 데이터 모델링 탐색: 현상의 생성과 증거를 만드는 과정을 중심으로. 생물교육, 50(4). 529-542. https://doi.org/10.15717/BIOEDU.2022.50.4.529
- 김만희(2003). 폴라니의 인식론에 근거한 과학교수의 내러티브적 성격 고찰. 한국교원대학교 대학원 박사학위논문.
- 김미경, 김희백(2008). 개방적 참탐구 활동에서 학생들의 과학의 본성에 대한 이해에 영향을 미치는 요인 탐색. 한국과학교육학회지, 28(6), 565-578. https://doi.org/10.14697/JKASE.2008.28.6.565
- 김영민(1994). 글쓰기, 복잡성의 철학의 해석학을 위하여. 오늘의 문예비평, 12, 77-104.
- 김지윤, 최승언, 김찬종(2016). 공동생성적 대화가 중학생의 과학적 모델에 관한 이해와 모델 구성에 미치는 영향. 한국지구과학회지, 37(4), 243-268.
- 노철현(2011). 교육내용으로서의 '지식의 형식'의 의미: 오우크쇼트의 관점을 중심으로. 한국초등교육, 22(1), 159-180. https://doi.org/10.20972/KJEE.22.1.201104.159
- 박희경, 최종림, 김찬종, 김희백, 유준희, 장신호, 최승언(2016). 과학적 모델의 사회적 구성 수업을 통한 과학영재 학생들의 모델링 능력 변화. 한국과학교육학회지, 36(1), 15-28. https://doi.org/10.14697/JKASE.2016.36.1.0015
- 신명경, 권경필(2016). 에너지 관련 중등 과학 교과서 단원의 과학 실행(Science Practice) 특징 탐색. 에너지기후변화교육, 6, 185-197. https://doi.org/10.22368/KSECCE.2016.6.2.185
- 양찬호, 김수현, 조민진, 노태희(2016). 물질의 입자성에 대한 모형 구성 과정에서 나타나는 소집단 토론과 전체 학급 토론의 특징. 한국과학교육학회지, 36(3), 361-369. https://doi.org/10.14697/JKASE.2016.36.3.0361
- 오필석(2020). 과학 교육에서 기능 중심의 과학 탐구에 대한 비판적 고찰. 한국과학교육학회지, 40(2), 141-150. https://doi.org/10.14697/JKASE.2020.40.2.141
- 유금복, 이종혁, 이선경(2022). 행위자-네트워크 이론으로 본 과학적 실행의 현상 생성 사례. 교과교육학연구, 26, 179-190. https://doi.org/10.24231/RICI.2022.26.2.179
- 이선경, 신명경(2023). 학교 과학 교육 담론. 서울: 북스힐.
- 이선경, 손정우, 김종희, 박종석, 서혜애, 심규철, 최재혁(2013). 고등학교 과학수업 사례 분석을 통한 학교 과학 탐구의 특징. 한국과학교육학회지, 33(2), 284-309. https://doi.org/10.14697/JKASE.2013.33.2.284
- 이신영, 김찬종, 최승언, 유준희, 박현주, 강은희, 김희백(2012). 소집단 상호작용에 따른 심장 내 혈액 흐름에 대한 소집단 모델 발달 유형과 추론 과정 탐색. 한국과학교육학회지, 32(5), 805-822. https://doi.org/10.14697/JKASE.2012.32.5.805
- 이종봉(2018). 과학교육에서의 지식개념에 대한 비판적 검토: Giere의 모형 기반 과학철학을 중심으로. 서울대학교 대학원 박사학위논문.
- 이차은, 김희백(2016). 과학적 모형 구성 과정에서 나타난 사고 질문의 개념적 자원 활성화의 이해-인식론적 프레이밍과 위치 짓기 프레이밍을 중심으로. 한국과학교육학회지, 36(3), 471-483. https://doi.org/10.14697/JKASE.2016.36.3.0471
- 장하석(2015). 과학, 철학을 만나다. 지식 플러스.
- 장하석(2021). 물은 H2O인가? 증거, 실재론, 다원주의. (전대호 역). 파주: 김영사. (원서는 2012년).
- 정용재(2020). '설다'와 '익다'의 너나들이: 이종네트워크로서 과학학습. 한국과학교육학회지, 40(6), 631-648. https://doi.org/10.14697/JKASE.2020.40.6.631
- 정용욱(2014). 법칙, 이론, 그리고 원리: 규범적 의미와 실제사용에서의 혼란. 한국과학교육학회지, 34(5), 459-468. https://doi.org/10.14697/JKASE.2014.34.5.0459
- 조혜숙, 남정희(2017). 과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석. 한국과학교육학회지, 37(4), 539-552. https://doi.org/10.14697/JKASE.2017.37.4.539
- 조희형(1992). 과학적 탐구의 본질에 대한 분석 및 탐구력 신장을 위한 학습지도 방법에 대한 연구. 한국과학교육학회지, 12(1), 61-73.
- 한기철, 곽덕주, 김상섭(2010). 교육철학 방법으로서의 프래그머티즘 재음미: 프랙티스의 교육적 의미를 중심으로. 교육사상연구, 24(1), 177-203. https://doi.org/10.17283/JKEDI.2010.24.1.177
- Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H.-L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419. https://doi.org/10.1002/sce.10118
- Bailer-Jones, D. M. (2009). Scientific models in philosophy of science. University of Pittsburgh Press.
- Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2016). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(7), 1082-1112. https://doi.org/10.1002/tea.21257
- Bikner-Ahsbahs, A. (2009). Networking of theories-why and how? Special plenary lecture. In V. Durand-Guerrier, S. Soury-Lavergne, & S. Lecluse (Eds.), Proceedings of CERME6. http://www.inrp.fr/publications/edition-electronique/cerme6/plenary-01-bikner.pdf
- Bikner-Ahsbahs, A., Bakker, A., Johnson, H. L., & Chan, E. (2019). Introduction to the thematic working group 17 on theoretical perspectives and approaches in mathematics education research of CERME11. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of CERME11. (pp. 3020-3027). Utrecht, NL: Utrecht University.
- Boumans, M. (1999). Built-in justification. In M. S. Morgan & M. Morrison (Eds.), Models as mediators (pp. 66-96). NY: Cambridge University Press.
- Callon, M. (1986). Some elements of a sociology of translation: Domestication of the scallops and the fishermen of St brieuc bay. In J. Law (Ed.), Power, action and belief: A new sociology of knowledge (pp. 196-233). London: Routledge & Kegan Paul.
- Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). "An experiment is when you try it and see if it works": A study of grade 7 students' understanding of the construction of scientific knowledge. International Journal of Science Education, 11, 514-529. https://doi.org/10.1080/0950069890110504
- Chinn, C. A., & Melhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218. https://doi.org/10.1002/sce.10001
- Chiu, M. H. & Lin, J. W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1-12. https://doi.org/10.1186/s43031-019-0012-y
- Crawford, B. A. (2014). From inquiry to scientific practices in the science classroom. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, Volume II (pp. 529-556). Routledge.
- Dewey, J. (1987). Democracy and education (Lee, H. Trans.). Paju: Kyoyookbook. (Original work published 1916).
- Dewey, J. (2002). The child and the curriculum (Park, C. Trans.). Seoul: Moonumsa. (Original work published 1902).
- Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 365-395). The MIT Press.
- Duschl, A. R., Schweingruber, A. H., & Shouse, W. A. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington DC: The National Academies Press.
- Engestrom, Y., & Sannino, A. (2021). From mediated actions to heterogenous coalitions: Four generations of activity-theoretical studies of work and learning. Mind, Culture, and Activity, 28(1), 4-23. https://doi.org/10.1080/10749039.2020.1806328
- Flick, L. B., & Lederman, N. G. (2006). Science inquiry and nature of science implications for teaching, learning, and teacher education. Dordrecht: Springer.
- Ford, M. J. (2015). Educational implications of choosing practice to describe science in the next generation science standards. Science Education, 99(6), 1041-1048. https://doi.org/10.1002/sce.21188
- Furtak, E. M., & Penuel, W. R. (2019). Coming to terms: Addressing the persistence of "hands-on" and other reform terminology in the era of science as practice. Science Education, 103(1), 167-186. https://doi.org/10.1002/sce.21488
- Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.
- Garcia-Mila, M., & Anderson, C. (2008). Cognitive foundations of learning argumentation. In S. Erduran, & M. P. Jimenz-Alexandre (Eds.), Argumentation in science education (pp. 29-45). UK: Springer.
- Giere, R. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.
- Giere, R. (2018). Models of experiments. In I. F. Peschard & B. C. van Fraassen (Eds.), The experimental side of modeling (pp. 59-70). MN: University of Minnesota Press.
- Giere, R., Bickle, J., & Maudlin, F. (2006). Understanding scientific reasoning. Ontario: Thomson Wadsworth.
- Gilbert, J. K., Boutler, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boutler (Eds.), Developing models in science education (pp. 3-19). Dordrecht: Kluwer Academic Publishers.
- Grandy, R., & Duschl, R. A. (2007). Reconsidering the character and role of inquiry in school science: Analysis of a conference. Science & Education, 16. 141-166. https://doi.org/10.1007/s11191-005-2865-z
- Halloun, I. A. (2006). Modeling theory in science education. Dordrecht: Springer.
- Hardahl, L. K., Wickman, P. O., & Calman, C. (2019). The body and the production of phenomena in the science laboratory. Science & Education, 28, 865-895. https://doi.org/10.1007/s11191-019-00063-z
- Harvard-Smithsonian Center for Astrophysics (1997). Minds of our own: Can we believe our eyes? [Videotape]. Annenberg Foundation.
- Havdala, R., & Ashkenazi, G. (2007). Coordination of theory and evidence: Effect of epistemological theories on students' laboratory practice. Journal of Research in Science Teaching, 44(8), 1134-1159. https://doi.org/10.1002/tea.20215
- Heidegger, M. (1962). Being and time (J. Macquarrie & E. Robinson, Trans.). New York: Haroer & Row.
- Hesse, M. (1963). Models and analogies in science. London: Sheed and Ward.
- Hestenes, D. (1992). Modeling games in the Newtonian world. American Journal of Physics, 60(8), 732-748. https://doi.org/10.1119/1.17080
- Hodson, D. (2009). Teaching and learning about science. The Netherlands: Sense Publishers.
- Irzik, G., & Nola, R. (2010). A family resemblance approach to the nature of science for science education. Science & Education, 20(7), 591-607. https://doi.org/10.1007/s11191-010-9293-4
- Jimenez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In M. P. Jimenez-Aleixandre & S. Erduran (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp.3-27). Dordrecht: Springer.
- Khishfe, R., & Abd-El-Khalick, F. (2002). The influence of explicit reflective versus implicit inquiry-oriented instruction on sixth graders' views of nature of science. Journal of Research in Science Teaching, 39(7), 551-578. https://doi.org/10.1002/tea.10036
- Kuhn, D., Amsel, E., & O'Loughlin, M. (1988). The development of scientific thinking skills. San Diego, CA: Academic Press.
- Kuhn, D., & Franklin, S. (2006). The second decade: What develops (and how)? In W. Damon, & R. M. Lerner (Series Eds.), Handbook of child psychology: Vol. 2, Cognition, perception, and language (6th ed., pp. 953-993). Hoboken, NJ: Wiley.
- Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: University of Chicago Press.
- Kwant, R. C. (1963). The phenomenological philosophy of Merleau-Ponty. Pittsburgh: Duquesne University Press.
- Ladyman, J. (2012). Understanding philosophy of science. Routledge.
- Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press.
- Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, MA: Harvard University Press.
- Latour, B. (2009). We have never been modern (Hong, C. Trans.). Seoul: Galmuri. (Original work published 1991).
- Leach, J. (1998). Teaching about the world of science in the laboratory: The influence on teaching of student's ideas. In Wellington, J. J. (ed.), Practical work in school science: Which way now? (pp. 52-68). NY: Routledge.
- Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature science. Journal of Research in Science Teaching, 39(6), 497-521. https://doi.org/10.1002/tea.10034
- Lehrer, R., & Schauble, L. (2015). The development of scientific thinking. In R. M. Lerner (Ed.), Handbook of child psychology and developmental science (pp. 1-44). Hoboken: Wiley.
- Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39(1), 57-68. https://doi.org/10.1207/s15326985ep3901_6
- Lynch, M. (1985). Art and artifacts in laboratory science: A study of shop work and shop talk in a research laboratory. Routledge & Kegan Paul.
- Manz, E. (2015). Representing student argumentation as functionally emergent from scientific activity. Review of Educational Research, 85(4), 553-590. https://doi.org/10.3102/0034654314558490
- Matthews, E. (1999). Twentieth-century French philosophy. Philosophical Quarterly, 49(195), 281-283.
- Matthews, M. R. (2007). Models in science and in science education: An introduction. Science & Education, 16, 647-652. https://doi.org/10.1007/s11191-007-9089-3
- McComas, W. F., Clough, M. P., & Almazroa, H. (1998). The role and character of the nature of science in science education. In W. McComas (Ed.), The nature of science education (pp. 3-39). Los Angeles: Kluwer Academic Publisher.
- McNeill, K. L. (2011). Elementary students' views of explanation, argumentation and evidence, and their abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48, 793-823. https://doi.org/10.1002/tea.20430
- Mendonca, P. C. C., & Justi, R. (2011). Contributions of the model of modelling diagram to the learning of ionic bonding: Analysis of a case study. Research in Science Education, 41(4), 479-503. https://doi.org/10.1007/s11165-010-9176-3
- Merleau-Ponty, M. (2013). Phenomenology of perception. Routledge.
- Millar, R. (1998). Rhetoric and reality: What practical work in science education is really for. In J. Wellington (ed.), Practical work in school science: Which way now? (pp. 16-31). London: Routledge.
- Miller, E., Manz, E., Russ, R., Stroupe, D., & Berland, L. (2018). Addressing the epistemic elephant in the room: Epistemic agency and the next generation science standards. Journal of Research in Science Teaching, 55(7), 1053-1075. https://doi.org/10.1002/tea.21459
- Morgan, M. S., & Morrison, M. (1999). Models as mediators: Perspectives on natural and social science. Cambridge University Press.
- Nagel, E. (1960). Logic without metaphysics. Philosophy, 35(132), 81-83. https://doi.org/10.1017/S0031819100037864
- National Research Council. (1996). National science education standards. Washington, D.C.: National Academy Press.
- National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, D.C.: National Academies Press.
- NGSS Lead States. (2013). Next generation science education standards: For states, by states. Washington, D.C.: The Academies Press.
- Oakeshott, M. (1992). Learning and teaching (Cha, M. Ttrans.). gyoyugjinheung (spring-summer), 126-143, 155-169. (Original work published 1967).
- O'Hara, J. G., & Pricha, W. (1987). Hertz and the Maxwellians: A study and documentation of the discovery of electromagnetic wave radiation. London: Peter Peregrinus Ltd.
- Paavola, S., & Hakkarainen, K. (2005). The knowledge creation metaphor: An emergent epistemological approach to learning. Science & Education, 14(6), 535-557. https://doi.org/10.1007/s11191-004-5157-0
- Passmore, C., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554. https://doi.org/10.1080/09500693.2011.577842
- Pickering, A. (1995). The mangle of practice: Time, agency, and science. Chicago: University of Chicago Press.
- Pierson, A. E., & Clark, D. B. (2019). Sedimentation of modeling practices. Science & Education, 28, 897-925. https://doi.org/10.1007/s11191-019-00050-4
- Pierson, A. E., Clark, D. B., & Kelly, G. J. (2019). Learning progressions and science practices. Science & Education, 28, 833-841. https://doi.org/10.1007/s11191-019-00070-0
- Pierson, A. E., Clark, D. B., & Sherard, M. K. (2017). Learning progressions in context: Tensions and insights from a semester-long middle school modeling curriculum. Science Education, 101(6), 1061-1088. https://doi.org/10.1002/sce.21314
- Polanyi, M. (1958). Personal knowledge. Chicago: University of Chicago Press.
- Polanyi, M. (1969). Knowing and being. Routledge and Kegan Paul.
- Potts, L. (2008). Diagramming with actor-network theory: A method for modeling holistic experience. Paper presented in 2008 International Conference on Professional Communication.
- Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: First steps towards a conceptual framework. ZDM International Journal on Mathematics Education, 40(2), 165-178. https://doi.org/10.1007/s11858-008-0086-z
- Rea-Ramirez, M. A., Clement, J., & Nunez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In J. J. Clement & M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science (pp. 23-43). The Netherlands: Springer.
- Rouse, J. (2007). Practice theory. In S. Turner & M. Risjord (Eds.), Handbook of the philosophy of science Vol 15: Philosophy of anthropology and sociology (pp. 630-681). Dordrecht: Elsevier.
- Rudolph, J. L. (2005). Inquiry, instrumentalism, and the public understanding of science. Science Education, 89, 803-821. https://doi.org/10.1002/sce.20071
- Schank, R. C., & Abelson, P. A. (1977). Scripts, plans, goals, and understanding: An inquiry into human knowledge structures. Psychology Press.
- Sikorski, T. R. (2019). Context-dependent "upper anchors" for learning progressions. Science & Education, 28, 957-981. https://doi.org/10.1007/s11191-019-00074-w
- Suppe, F. (Ed.). (1977). The structure of scientific theories. University of Illinois Press.
- Svoboda, J., & Passmore, C. (2013). The strategies of modeling in biology education. Science & Education, 22, 119-142. https://doi.org/10.1007/s11191-011-9425-5
- Wellington, J. (1998). Practical work in science: Time for a reappraisal. In Wellington, J. J. (Ed.), Practical work in school science: Which way now? (pp. 3-15). NY: Routledge.
- Wittgenstein, L. (1953). The philosophical investigations. Oxford: Blackwell.
- Woolnough, B. E. (1989). Towards a holistic view of process in science education. In J. J. Wellington, Skills and processes in science education (pp. 115-134). London: Routledge.