DOI QR코드

DOI QR Code

An Efficient SLC Transition Method for Improving Defect Rate and Longer Lifetime on Flash Memory

플래시 메모리 상에서 불량률 개선 및 수명 연장을 위한 효율적인 단일 비트 셀 전환 기법

  • Hyun-Seob Lee (Division of Computer Engineering, Baekseok University)
  • 이현섭 (백석대학교 컴퓨터공학부)
  • Received : 2023.04.10
  • Accepted : 2023.06.14
  • Published : 2023.06.30

Abstract

SSD (solid state disk), which is flash memory-based storage device, has the advantages of high density and fast data processing. Therefore, it is being utilized as a storage device for high-capacity data storage systems that manage rapidly increasing big data. However, flash memory, a storage media, has a physical limitation that when the write/erase operation is repeated more than a certain number of times, the cells are worn out and can no longer be used. In this paper, we propose a method for converting defective multi-bit cells into single-bit cells to reduce the defect rate of flash memory and extend its lifetime. The proposed idea distinguishes the defects and treatment methods of multi-bit cells and single-bit cells, which have different physical characteristics but are treated as the same defect, and converts the expected defective multi-bit cells into single-bit cells to improve the defect rate and extend the overall lifetime. Finally, we demonstrate the effectiveness of our proposed idea by measuring the increased lifetime of SSD through simulations.

플래시 메모리 기반 저장장치인 SSD(solid state disk)는 높은 집적도와 빠른 데이터 처리가 가능한 장점을 가지고 있다. 따라서 급격하게 증가하고 있는 빅데이터를 관리하는 고용량 데이터 저장 시스템의 저장장치로 활용되고 있다. 그러나 저장 미디어인 플래시 메모리에 일정 횟수 이상 반복해서 쓰기/지우기 동작을 반복하면 셀이 마모되어 사용하지 못하는 물리적 한계가 있다. 본 논문에서는 플래시 메모리의 불량률을 줄이고 수명을 연장하기 위해 불량이 발생한 다중 비트 셀을 단일 비트 셀로 변환하여 사용하는 방법을 제안한다. 제안하는 아이디어는 물리적 특징이 다르지만 동일하게 불량으로 처리되고 있는 다중 비트 셀과 단일 비트 셀의 불량 및 처리 방법을 구분하였다. 그리고 불량이 예상되는 다중 비트 셀을 단일 비트 셀로 변환하여 불량률을 개선하고 전체적인 수명을 연장하였다. 마지막으로 시뮬레이션을 통해 SSD의 증가한 수명을 측정하여 제안하는 아이디어의 효과를 증명하였다.

Keywords

Acknowledgement

This paper was supported by 2023 Baekseok University Research Fund

References

  1. H.S.Lee, "A method for optimizing lifetime prediction of a storage device using the frequency of occurrence of defects in NAND flash memory," Journal of Internet of Things and Convergence, Vol.7, No.4, pp.9-14, 2021. https://doi.org/10.20465/KIOTS.2021.7.4.009
  2. H.S.Lee, "High Efficiency Life Prediction and Exception Processing Method of NAND Flash Memory-based Storage using Gradient Descent Method," Journal of Convergence for Information Technology, Vol.11, No.11, pp.44-50, 2021 https://doi.org/10.22156/CS4SMB.2021.11.11.044
  3. H.S.Lee, "A Safety IO Throttling Method Inducting Differential End of Life to Improving the Reliability of Big Data Maintenance in the SSD based RAID," Journal of Digital Convergence, Vol.20, No.5, pp.593-598, 2022. https://doi.org/10.14400/JDC.2022.20.5.593
  4. H.S.Lee, "Performance analysis and prediction through various over-provision on NAND flash memory based storage," Journal of Digital Convergence, Vol.20, No.3, pp.343-348, 2022. https://doi.org/10.14400/JDC.2022.20.3.343
  5. Y.Takai, M.Fukuchi, R.Kinoshita, C.Matsui and K.Takeuchi, "Analysis on Heterogeneous SSD Configuration with Quadruple-Level Cell (QLC) NAND Flash Memory," IEEE 11th International Memory Workshop, pp.1-4, 2019
  6. H. Chen, Y. Lv, C. Li, S. Gu and L. Shi, "An Empirical Study of Hybrid SSD with Optane and QLC Flash," IEEE 38th International Conference on Computer Design, pp.175-178, 2020
  7. L.Yang, Q.Wang, Q.Li, X.Yu, J.He and Z.Huo, "Gradual Channel Estimation Method for TLC NAND Flash Memory," IEEE Embedded Systems Letters, Vol.14, No.1, pp.7-10, 2022 https://doi.org/10.1109/LES.2021.3081738
  8. R.Ma, F.Wu, M.Zhang, Z.Lu, J.Wan and C.Xie, "RBER-Aware Lifetime Prediction Scheme for 3D-TLC NAND Flash Memory," IEEE Access, Vol.7, pp.44696-44708, 2019 https://doi.org/10.1109/ACCESS.2019.2909567
  9. R.He,H.Hu,C.Xiong and G.Han, "Artificial Neural Network Assisted Error Correction for MLC NAND Flash Memory," micromachines, Vol.12, No.8 pp.879, 2021.
  10. L.Kong, Y.Liu, H.Liu and S.Zhao, "Protograph QC-LDPC and Rate-Adaptive Polar Codes Design for MLC NAND Flash Memories," IEEE Access, Vol.7, pp.37131-37140, 2019 https://doi.org/10.1109/ACCESS.2019.2904746
  11. G.Hemink and A.Goda, "5 - NAND Flash technology status and perspectives," Semiconductor Memories and Systems, pp.119-158, 2022
  12. H.S.Lee, "A Memory Mapping Technique to Reduce Data Retrieval Cost in the Storage Consisting of Multi Memories," Journal of Internet of Things and Convergence, Vol.9, No.1, pp.19-24, 2023 https://doi.org/10.20465/KIOTS.2023.9.1.019
  13. H.S.Lee, "A Prediction-Based Data Read Ahead Policy using Decision Tree for improving the performance of NAND flash memory based storage devices," Journal of Internet of Things and Convergence, Vol.8, No.4, pp.9-15, 2022. https://doi.org/10.20465/KIOTS.2022.8.4.009
  14. H.S.Lee, "A Study on the Performance Measurement and Analysis on the Virtual Memory based FTL Policy through the Changing Map Data Resource," Journal of Internet of Things and Convergence, Vol.9, No.1, pp.71-76, 202 https://doi.org/10.20465/KIOTS.2023.9.1.071
  15. W.J.Buchanan, "IDE," The Handbook of Data Communications and Networks, pp.525-547, 2004.