DOI QR코드

DOI QR Code

Development of Framework for Digital Map Time Series Analysis of Earthwork Sites

토공현장 디지털맵 시계열 변화분석 프레임워크 기술개발

  • 김용건 (한국교통대학교 철도시설공학과) ;
  • 박수열 (한국교통대학교 철도융합시스템공학과) ;
  • 김석 (한국교통대학교 철도인프라시스템공학과)
  • Received : 2023.03.03
  • Accepted : 2023.03.29
  • Published : 2023.03.31

Abstract

Due to the increased use of digital maps in the construction industry, there is a growing demand for high-quality digital map analysis. With the large amounts of data found in digital maps at earthwork sites, there is a particular need to enhance the accuracy and speed of digital map analysis. To address this issue, our study aims to develop new technology and verify its performance to address non-ground and range mismatch issues that commonly arise. Additionally, our study presents a new digital map analysis framework for earthwork sites that utilizes three newly developed technologies to improve the performance of digital map analysis. Through this, it achieved about 95% improvement in analysis performance compared to the existing framework. This study is expected to contribute to the improvement of the quality of digital map analysis data of earthworks.

Keywords

Acknowledgement

본 논문은 국토교통부/국토교통과학기술진흥원이 시행하는 "스마트건설기술개발 국가R&D사업(과제번호 23SMIP-A158708-04)"의 지원으로 수행하였습니다.

References

  1. Anglin, J. M., Miller, G. A., Wakefield, P. C. (1993). Vocabulary development: A morphological analysis. Monographs of the society for research in child development, pp. i-186.
  2. Barbosa, F., Woetzel, J., Mischke, J. (2017). Reinventing construction: A route of higher productivity. McKinsey Global Institute.
  3. Bello, S. A., Yu, S., Wang, C., Adam, J. M., Li, J. (2020). Deep learning on 3D point clouds. Remote Sensing, 12(11), 1729, DOI:10.3390/rs12111729.
  4. Chen, C., Li, Y., Zhao, N., Guo, J., Liu, G. (2017). A fast and robust interpolation filter for airborne lidar point clouds. PloS One, 12(5), e0176954.
  5. Jaccard, P. (1912). The Distribution of the Flora in the Alpine Zone. New Phytologist, 11(2), pp. 37-50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
  6. Kim, S., Park, J. W. (2015). Analysis of Accuracy and Productivity of Terrestrial Laser Scanner for Earthwork. The Journal of the Korea Contents Association, 15(10), pp. 587-596. https://doi.org/10.5392/JKCA.2015.15.10.587
  7. Kim, S., Park, J. W., Kim, K. H. (2017). A Study on Terrain Digitalization for Earthwork Automation. In Proceedings of the Korea Contents Association Conference pp. 407-408.
  8. Kim, Y. G., Park, S. Y., Kim, S. (2022). Development of Registration Post-Processing Technology to Homogenize the Density of Scan Data of Earthwork site. KSCE Journal of Civil and Environmental Engineering Research, 42(5), pp. 689-699. https://doi.org/10.12652/KSCE.2022.42.5.0689
  9. Kim, Y. G., Park, S. Y., Kim, S. (2022). Development of Registration Post-Processing Technology to Homogenize the Density of Scan Data of Earthwork site. KSCE Journal of Civil and Environmental Engineering Research, 42(5). pp. 689-699. https://doi.org/10.12652/KSCE.2022.42.5.0689
  10. Kramer, O. (2016). Scikit-learn. In Machine learning for evolution strategies pp. 45-53.
  11. Pan, M., Linner, T., Pan, W., Cheng, H., Bock, T. (2018). A framework of indicators for assessing construction automation and robotics in the sustainability context. Journal of Cleaner Production, 182, pp. 82-95. https://doi.org/10.1016/j.jclepro.2018.02.053
  12. Park, J. W., Kim, S. (2019). MMS Accuracy Analysis for Earthwork Site Application. Journal of the Korean Society of Industry Convergence, 22(2), pp. 183-189. https://doi.org/10.21289/KSIC.2019.22.2.183
  13. Park, S. Y., Kim, S. (2020). Performance Evaluation of Denoising Algorithms for the 3D Construction Digital Map. Journal of KIBIM, 10(4), pp. 32-39. https://doi.org/10.13161/KIBIM.2020.10.4.032
  14. Park, S. Y., Kim, S. (2021). Analysis of overlap ratio for registration accuracy improvement of 3D point cloud data at construction sites. Journal of KIBIM, 11(4), pp. 1-9. https://doi.org/10.13161/KIBIM.2021.11.4.001
  15. Park, S. Y., Kim, Y. G., Choi, Y. J., Lim, Y. J., Kim, S. (2021). A Study on the Process for Automatic Analysis of Digital Maps in the Earthworks Site. Proceedings of The Korean Society for Railway, pp. 124-124.
  16. Pingel, T. J., Clarke, K. C., McBride, W. A. (2013). An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 77, pp. 21-30. https://doi.org/10.1016/j.isprsjprs.2012.12.002
  17. Qin, R., Tian, J., Reinartz, P. (2016). 3D change detection-approaches and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 122, pp. 41-56. https://doi.org/10.1016/j.isprsjprs.2016.09.013
  18. Ruspini, E. H. (1969). A new approach to clustering. Information and control, 15(1), pp. 22-32. https://doi.org/10.1016/S0019-9958(69)90591-9
  19. Shen, J., Liu, J., Zhao, R., Lin, X. (2011). A Kd-tree-based outlier detection method for airborne LiDAR point clouds. In 2011 international symposium on image and data fusion, pp. 1-4.
  20. Stroner, M., Urban, R., Lidmila, M., Kolar, V. and Kremen, T. (2021). Vegetation filtering of a steep rugged terrain: The performance of standard algorithms and a newly proposed workflow on an example of a railway ledge. Remote Sensing, 13(2), 3050.
  21. Tanimoto, T. T. (1958). An elementary mathematical theory of classification and prediction. Internal Report IBM Corp.
  22. Wang, Q., Kim, M. K. (2019). Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018. Advanced Engineering Informatics, 39, pp. 306-319, DOI:10.1016/j.aei.2019.02.007.
  23. Wei, L., Yangz, B., Jiang, J., Cao, G., Wu, M. (2017). Vegetation filtering algorithm for UAV-borne lidar point clouds: a case study in the middle-lower Yangtze River riparian zone. International Journal of Remote Sensing, 38, pp. 2991-3002. https://doi.org/10.1080/01431161.2016.1252476
  24. Zhang, K., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J., Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE transactions on geoscience and remote sensing, 41(4), pp. 872-882. https://doi.org/10.1109/TGRS.2003.810682
  25. Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., Yan, G. (2016). An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote sensing, 8(6), p. 501.