• Title/Summary/Keyword: 토공현장

Search Result 139, Processing Time 0.024 seconds

Estimation of Excavation Difficulty in Rock Mass (토공작업시 암반 굴착난이도 판정기준)

  • 유병옥;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06b
    • /
    • pp.85-115
    • /
    • 2003
  • 토공작업시 굴착난이도(토층, 리핑암, 발파암)를 판정하는 기준으로는 암반의 강도, 풍화정도, 불연속면 간격과 같은 여러 가지 암반의 공학적 특성 및 지반의 탄성파 속도 등이 사용된다. 그러나 실제 토공 작업시의 굴착난이도 평가는 탄성파 탐사와 같은 암석ㆍ암반의 정량적인 판단기준에 근거하지 않고 단지 현장 기술자들의 육안관찰에 의존하여 굴착난이도를 구분하고 있는 실정이다. 본 논문은 실내시험 및 현장시험, 현장굴착난이도 평가 및 탄성파탐사 등을 실시하여 여러 암석에 대한 강도특성을 파악한 것을 근거로 현장에서 사용할 수 있는 암반굴착난이도 평가법의 Checklist를 제안하였다.

  • PDF

Development of Construction Project Management System Applicable to Earth-Work Field (토공 현장관리 중심의 시공관리시스템 개발에 관한 연구)

  • Kwon, Oh-Yong;Jo, Jae-Ik;Kim, Do-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.301-304
    • /
    • 2008
  • The purpose of this study is to embody the integrated working management system for public works, focused on the management of surplus soil at a field of public works. The contents and results of this study can be classified into the design of working management DB for public works and the embodiment of working management DB. First, the design of working management DB for public works consists of three DBs - process management to analyze work plan and performance. for backhoe loader, working management and resources management for equipment and labor management - in connection with work and resources classification system. Secondly, the working management system for public works can describe work plan and performance on a floor plan using graphic. Based on this, the status of process and progress report with visual expression had been developed to facilitate the communications and performance of duties among staff in charge at the field of public works. This study is a specialized system for a company specializing in public works and a system that can be put into practical use if practicality is proved through test-bed with regard to business.

  • PDF

Analysis of Accuracy and Productivity of Terrestrial Laser Scanner for Earthwork (3차원 스캐너의 토공현장 적용을 위한 정밀도 및 생산성 분석)

  • Kim, Seok;Park, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.587-596
    • /
    • 2015
  • 3D scanners are applied to many industries, such as manufacturing, construction, and shipbuilding. Recently, 3D scanner is used in 3D imaging of worksite in order to control and guide earthmoving heavy equipments, which provides basic information for intelligent excavation. This study compares the accuracy and productivity between total stations and high-resolution 3D scanners. The analysis results show that 3D scanner has high accurate rate of greater than 99 percent and has low error rate of less than 2.0mm compared to total stations. In terms of productivity, 3D scanner saves 71 percent of measuring time compared to the total station. This study confirms that 3D scanner can measure the earthwork sites with high accuracy and better productivity.

Hydrologic Analysis for the Prevention of Flood Damage in Earthworks Site (토공현장의 수해방지를 위한 수문분석)

  • Han, seung-hee
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.169-170
    • /
    • 2019
  • 지구단위계획에 의한 택지개발 등의 현장에서 빈번하게 발생하는 토공은 우기 시에 많은 양의 토사침식이 우려된다. 따라서 현장에서 물관리는 매우 중요하며 이를 간과했을때는 대형 재해로 연결 될 수 있으므로 중요하다. 이들 지역은 대부분 소규모지역이므로 수문해석에 필요한 DSM을 드론사진측량으로 손 쉽게 구축할 수 있으며 이를 이용하여 유역면적의 파악, Flow direction, Flow accumulation을 분석한다면 준공까지 효율적으로 물관리가 가능하다.

  • PDF

Development and Evaluation of High-precision Earth-work Calculating System using Drone Survey (드론을 활용한 고정밀 토공량 산출 시스템 개발 및 평가)

  • Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.87-95
    • /
    • 2019
  • Earth-work calculation is the important data for estimating the optimal construction cost at the construction site. Earth-work calculations require the accurate terrain data and precise soil volume calculations. Drone surveying technology provides accurate topography in a short time and economic advantages. In this paper, a drone surveying technique was used to derive a high precision soil volume calculation system. Field demonstration were performed to verify the accuracy of the volume measurement system. The results of earth-work calculation using drone survey were compared with those of GPS surveying. In addition, the developed earth-work volume calculation algorithm is compared with the existing aerial survey software (Pix4D) to verify the accuracy.

BIM Based Automated Planning and Operation System for Earthwork Equipment (BIM 기반 토공 장비 계획 및 운영 자동화 시스템)

  • Kim, Jeong-Hwan;Jang, Jun-Hyun;Min, Ji-Hong;Seo, Jong-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.375-378
    • /
    • 2011
  • 건설공사에서 토공사가 차지하는 비중은 타공종에 비하여 높다. 즉 건설공사의 생산성을 향상시키기 위하여 토공사를 중점적으로 관리하는 일은 매우 중요하다고 할 수 있다. 그러나 현재의 토공 시스템은 굴삭 조종자와 현장 계획 관리자의 경험적 지식에만 의지하여 토공 계획을 수립하고 있는 실정이며, 또한 노동 집약적 토공작업의 한계를 벗어나지 못하는 현실로 인하여 토공사를 관리함에 어려움이 있다. 이러한 당면 과제를 극복하고자 BIM 기반의 토공 시스템에 대하여 소개하고자 한다. 본 논문에서는 굴삭 장비와 연계하는 토공 계획과 운영 자동화 시스템에 대하여 주로 다루게 된다. 굴삭 작업 계획 생성 시스템, 장비 조종 인터페이스, 웹 기반 Project Management Information System(PMIS)이 개발되는 과정에서 적용된 BIM 요소기술에 대하여 살펴본다.

  • PDF

Developing an Optimization Model and Program for Planning the Earthwork Based Upon Transportation Theory (수송모형이론에 의한 토공 운반 최적화 모델 및 프로그램 개발)

  • Lee, Seunghak;Son, Jaeho;Pyeon, Jaeho;Lee, Seunghyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.1
    • /
    • pp.101-109
    • /
    • 2016
  • During road construction, minimizing haul and return distances as well as keeping a balance between cut and fill quantities are two of the key tasks for earthmoving operation planning. The result of the earthwork planning has a significant impact on the construction cost and duration. Although there have been research efforts regarding optimized earthwork planning using linear programming, the current practice of selecting earthwork planning methods typically depends on a field manager's intuitive and/or experimental knowledge. Furthermore, there is no system considering earthwork influential field factors including the transportation distance, the earthwork quantity, and the recycling ratio of earth volume. Therefore, this research focuses on the development of such a model for planning the optimized earthwork to increase the efficiency of a road construction. The proposed model is developed based upon the transportation problem method which is a part of Linear Programming. The application result of optimization model on a case study shows that the duration and cost for earthwork ha sbeen reduced approximately 19% and 11% respectively

An Application of VRS-RTK Surveying in Construction Site (건설현장에서의 VRS-RTK측량 적용성 검토)

  • Kim, In-Seup;Joo, Hyun-Seung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.625-631
    • /
    • 2008
  • Correct evaluation of cut and fill volume of soil is one of the most important factors which controls construction cost in enormous construction sites. To achieve accurate computation of soil volume in construction site precise surveying is required, however most of construction sites adopt existing optical surveying instruments such as Total Station. The problem when using these optical instruments in construction sites is that these instruments take longer time in data acquisition. Due to insufficiency of computation time accurate and precise observation cannot be accomplished with these equipments. As a result roughly calculated earthwork volume may cause arguments between contractors and supervisors in the matter of reduction or increasement of total construction cost. In this study VRS-RTK Surveying is adopted to perform fast and accurate in-situ surveying for rapid computation of soil volume. This VRS-RTK Surveying system is proved to have more accurate three dimensional coordinates with high density and better economical solution with less manpower.

Development of a Prototype for an Earthwork BIM Environment (건설현장 굴착작업을 위한 토공 BIM 프로토타입 개발)

  • Moon, Sungwoo;Son, Jihong;Hong, Soonheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.707-714
    • /
    • 2015
  • The national government is pushing hard the adoption of the BIM (Building Information Modeling) technology in the construction industry. The BIM application provides a visualized environment where the construction manager can inspect the structure of buidling structures. The application also provides information on activity progresses as well as earned values. However, BIM is mostly applied to visualize a structural object with definite forms. The BIM technology needs to be extended to include an object with non-definite forms such as earthwork operations. The objective of this study is to present a prototype of earthwork BIM in the construction operation. The prototype has been built on the attributes of geological information, construction equipment and positioning. The prototype of earthwork BIM shows a 3D graphic simulation of construction equipment moving around for digging and loading.

Development of Earth-Volume Estimation Program using the precise LiDAR DEM (고정밀 LiDAR DEM을 이용한 토공량 계산 프로그램 개발)

  • Lee, Jin-Nyoung;Lee, Done-Ha;Lee, Young-Kyun;Suh, Yong-Cheol
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.143-161
    • /
    • 2010
  • In this study, EWS (Earth Work System), the earth-volume estimation program was developed in a way that could enhance efficiency of civil engineering construction through precise earth-volume modeling based on the 3D geospatial information. In this program, it is possible to estimate the precise earth-volume using LiDAR DEM and to establish the earth work plans based on the unit workload of the construction equipments. Also, EWS program can support the 3D visualization of the final results through Google Earth in order to understand intuitively or share the results of earth-volume estimation in the construction project. For verifying the possibility of appling EWS program to construction project, the construction site of Shin-Pochun substation in Shinbuk-myun, Pochon-City, Kunggi Province was selected as a study area and the results of earth-volume and earth work plans estimated from EWS program were compared with those of DAS program. As a result of comparison between EWS and DAS program, the more accurate earth-volume can be estimated by using 3D geospatial information and more reasonable earth work plan can also be established when use the EWS program was developed in this study. Thus, EWS program can enables improvement of productivity by establishing efficient construction plan in the construction site.