DOI QR코드

DOI QR Code

Characteristics of Sn-doped β-Ga2O3 single crystals grown by EFG method

EFG 법으로 성장한 β-Ga2O3 단결정의 Sn 도핑 특성 연구

  • Tae-Wan Je (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Su-Bin Park (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Hui-Yeon Jang (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Su-Min Choi (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Mi-Seon Park (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Yeon-Suk Jang (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Won-Jae Lee (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Yun-Gon Moon (Axel) ;
  • Jin-Ki Kang (Axel) ;
  • Yun-Ji Shin (Korea Institute of Ceramic Engineering and Technology) ;
  • Si-Yong Bae (Korea Institute of Ceramic Engineering and Technology)
  • Received : 2023.03.13
  • Accepted : 2023.03.22
  • Published : 2023.04.30

Abstract

The β-Ga2O3 has the most thermodynamically stable phase, a wide band gap of 4.8~4.9 eV and a high dielectric breakdown voltage of 8MV/cm. Due to such excellent electrical characteristics, this material as a power device material has been attracted much attention. Furthermore, the β-Ga2O3 has easy liquid phase growth method unlike materials such as SiC and GaN. However, since the grown pure β-Ga2O3 single crystal requires the intentionally controlled doping due to a low conductivity to be applied to a power device, the research on doping in β-Ga2O3 single crystal is definitely important. In this study, various source powders of un-doped, Sn 0.05 mol%, Sn 0.1 mol%, Sn 1.5 mol%, Sn 2 mol%, Sn 3 mol%-doped Ga2O3 were prepared by adding different mole ratios of SnO2 powder to Ga2O3 powder, and β-Ga2O3 single crystals were grown by using an edge-defined Film-fed Growth (EFG) method. The crystal direction, crystal quality, optical, and electrical properties of the grown β-Ga2O3 single crystal were analyzed according to the Sn dopant content, and the property variation of β-Ga2O3 single crystal according to the Sn doping were extensively investigated.

최근 전력반도체 소재로 관심을 가지는 Ga2O3의 β-상은 열역학적으로 가장 안정한 상을 가지며 4.8~4.9 eV의 넓은 밴드갭과 8 MV/cm의 높은 절연파괴전압을 갖는다. 이러한 우수한 물리적 특성으로 인해 전력반도체 소재로 많은 주목을 받고 있다. β-Ga2O3는 SiC 및 GaN의 소재와는 다르게 액상이 존재하기 때문에 액상 성장법으로 단결정 성장이 가능하다. 하지만 성장한 순수 β-Ga2O3 단결정은 전력 소자에 적용하기에는 낮은 전도성으로 인해 의도적으로 제어된 도핑 기술이 필요하며 도핑 특성에 관한 연구가 매우 중요하다. 이 연구에서는 Ga2O3 분말과 SnO2 분말의 몰 비율을 다르게 첨가하여 Un-doped, Sn 0.05 mol%, Sn 0.1mol%, Sn 1.5 mol%, Sn 2 mol%, Sn 3 mol%의 혼합분말을 제조하여 EFG(Edge-defined Film-fed Growth) 방법으로 β-Ga2O3 단결정을 성장시켰다. 성장된 β-Ga2O3 단결정의 Sn dopant 함량에 따른 결정 품질 및 광학적, 전기적 특성 변화를 분석하였으며 Sn 도핑에 따른 특성 변화를 광범위하게 연구하였다.

Keywords

Acknowledgement

이 연구는 2023년 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원(No. 2019R1A6C1010045)과 2023년 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원(P0012451, 2023년 산업혁신인재성장지원사업) 및 정부(과학기술정보통신부)의 재원으로 한국연구재단-나노 및 소재기술개발사업의 지원을 받아 수행된 연구임(2021M3H4A3A01061784).

References

  1. Baliga, B. Jayant, "Semiconductors for high-voltage, vertical channel field-effect transistors", J. Appl. Phys. 53.3 (1982) 1759.
  2. M. Higashiwaki, H. Murakami, Y. Kumagai and A. Kuramata, "Current status of Ga2O3 power devices", Japanese J. Appl. Phys. 55.12 (2016) 1202A1.
  3. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa and Y. Yaguchi, "Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method", Japanese J. Appl. Phys. 47.11R (2008) 8506.
  4. X. Ze-Ning, X. Xiang-Qian, L. Yue-Wen, H. Xue-Mei, X. Zi-Li, C. Peng, L. Bin, H. Ping, Z. Rong and Z. You-Dou, "Growth of β-Ga2O3 films on sapphire by hydride vapor phase epitaxy", Chin. Phys. Lett. 35.5 (2018) 058101.
  5. Z. Shengnan, L. Xiaozheng, M. Yanchao, L. Weidan, Z. Yingwu, X. Yongkuan and C. Hongjuan, "Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method", J. Semiconductors 39.8 (2018) 083003.
  6. F. Bo, M. Wenxiang, Z. Jin, W. Xiqiu, Z. Wenchang, Y. Yanru, J. Zhitai and T. Xutang, "A study on the technical improvement and the crystalline quality optimization of columnar β-Ga2O3 crystal growth by an EFG method", CrystEngComm 22.30 (2020) 5060.
  7. H.F. Mohamed, X. Changtai, S. Qinglin, C. Huiyuan, P. Mingyan and Q. Hongji, "Growth and fundamentals of bulk β-Ga2O3 single crystals", J. Semiconductors 40.1 (2019) 011801.
  8. X. HuiWen, H. QiMing, J. GuangZhong, L. ShiBing, P. Tao and L. Ming, "An overview of the ultrawide bandgap Ga2O3 semiconductor-based Schottky barrier diode for power electronics application", Nanoscale Res. Lett. 13.1 (2018) 1.
  9. N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima and T. Shishido, "Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal", Phys. Status Solidi C 4.7 (2007) 2310.
  10. K. Akito, K. Kimiyoshi, W. Shinya, Y. Yu, M. Takekazu and Y. Shigenobu, "High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth", Japanese J. Appl. Phys. 55.12 (2016) 1202A2.
  11. T. Huili, H. Nuotian, Z. Hao, L. Bo, Z. Zhichao, X. Mengxuan, C. Liang, L. Jinliang, O. Xiaoping and X. Jun, "Inhibition of volatilization and polycrystalline cracking, and the optical properties of β-Ga2O3 grown by the EFG method", CrystEngComm 22.5 (2020) 924.
  12. S. Arjan, K. Okan, T. Nicholas, M. Jonathan, J. Debdeep, X. Huili (Grace), P. Hartwin and R. Farhan, "Intra-and inter-conduction band optical absorption processes in β-Ga2O3", Appl. Phys. Lett. 117.7 (2020) 072103.
  13. Z. Hajanl, J. Miro, G. Kiss, F. Reti, P. Deak, R.C. Herndon and J.M. Kuperberg, "Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3", J. Appl. Phys. 86.7 (1999) 3792.