DOI QR코드

DOI QR Code

Breath Gas Sensors for Diabetes and Lung Cancer Diagnosis

  • Byeongju Lee (Welfare & Medical ICT Research Department, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Jin-Oh Lee (Welfare & Medical ICT Research Department, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Junyeong Lee (Welfare & Medical ICT Research Department, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Inkyu Park (Department of Mechanical Engineering, KAIST) ;
  • Dae-Sik Lee (Welfare & Medical ICT Research Department, Electronics and Telecommunications Research Institute (ETRI))
  • 투고 : 2022.11.21
  • 심사 : 2022.12.01
  • 발행 : 2023.01.31

초록

Recently, the digital healthcare technologies including non-invasive diagnostics based on Internet of Things (IOT) are getting attention. Human exhaled breath contains a variety of volatile organic compounds (VOCs), which can provide information of malfunctions of the body and presence of a specific disease. Detection of VOCs in exhaled breath using gas sensors are easy to use, safe, and cost-effective. However, accurate diagnosis of diseases is challenging because changes in concentration of VOCs are extremely small and lots of body factors directly or indirectly influence to the conditions. To overcome the limitations, highly selective nanosensors and artificial intelligent electronic nose (E-nose) systems have been mainly researched in recent decades. This review provides brief reviews of the recent studies for diabetes and lung cancer diagnosis using nanosensors and E-nose systems.

키워드

과제정보

This work was supported by the National Research Foundation of Korea under research projects number NRF-2017M3A9F1033056 and NRF-2021M3H4A4079271.

참고문헌

  1. Global Industry Analysts, Inc., Digital Health - Global Market Trajectory & Analytics, Research and Markets, Dublin, 2022.
  2. World Economic Forum, Top 10 Emerging Technologies of 2021, World Economic Forum, Geneva, 2021.
  3. A. Vasilescu, B. Hrioczenko, G. M. Swain, and S. F. Peteu, "Exhaled breath biomarker sensing", Biosens. Bioelectron., Vol. 182, p. 113193, 2021.
  4. D. Marzorati, L. Mainardi, G. Sedda, R. Gasparri, L. Spaggiari, and P. Cerveri, "A review of exhaled breath: a key role in lung cancer diagnosis", J. Breath Res., Vol. 13, No. 3, p. 034001, 2019.
  5. M. Y. Chuang, C. C. Chen, H. W. Zan, H. F. Meng, and C. J. Lu, "Organic Gas Sensor with an Improved Lifetime for Detecting Breath Ammonia in Hemodialysis Patients", ACS Sens., Vol. 2, No. 12, pp. 1788-1795, 2017. https://doi.org/10.1021/acssensors.7b00564
  6. D. Hashoul and H. Haick, "Sensors for detecting pulmonary diseases from exhaled breath", Eur. Respir. Rev., Vol. 28, No. 152, pp. 190011(1)-190011(13), 2019.
  7. R. Vishinkin and H. Haick, "Nanoscale Sensor Technologies, for Disease Detection via Volatolomics", Small, Vol. 11, No. 46, pp. 6142-6164, 2015. https://doi.org/10.1002/smll.201501904
  8. Z. Wang and C. Wang, "Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements", J. Breath Res., Vol. 7, No. 3, p. 037109, 2013.
  9. J. Lee, C. Lim, H. Park, H. Song, S. Choi, and D. Lee, "ZnO-CuO Core Hollow Cube Nanostructures for Highly Sensitive Acetone Gas Sensors at the ppb Level", ACS Appl. Mater. Interfaces, Vol. 12, No. 31, pp. 35688-35697, 2020. https://doi.org/10.1021/acsami.0c08593
  10. N. H. Hanh, L. V. Duy, C. M, Hung, C. T, Xuan, N. V. Duy, and N. D. Hoa, "High-performance acetone gas sensor based on Pt-Zn2SnO4 hollow octahedra for diabetic diagnosis", J. Alloys. Compd., Vol. 886, p. 161284, 2021.
  11. A. Ma, H. Park, J. Seo, K. Jang, H. Lee, D. Kim, J. Lee, K. Nam, and D. Lee, "Phase transition of non-equilibrium wurtzite CoO: Spontaneous deposition of sensing material for ultrasensitive detection of acetone", Sens. Actuators. B. Chem., Vol. 308, p. 127698, 2020.
  12. G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang, and J. Xu, "Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone", Sens. Actuators. B. Chem., Vol. 283, pp. 590-601, 2019. https://doi.org/10.1016/j.snb.2018.09.117
  13. J. Guo, D. Zhang, T. Li, J. Zhang, and L. Yu, "Green lightdriven acetone gas sensor based on electrospinned CdS nanospheres/Co3O4 nanofibers hybrid for the detection of exhaled diabetes biomarker", J. Colloid. Interface. Sci., Vol. 606, pp. 261-271, 2022. https://doi.org/10.1016/j.jcis.2021.08.022
  14. W. Lei, L. Xu, K. Sheng, X. Zhou, B. Dong, G. Lu, and H. Song, "A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection", NPG Asia. Mater., Vol. 10, No. 4, pp. 293-308, 2018. https://doi.org/10.1038/s41427-018-0029-2
  15. B. Behera, R. Joshi, G. K. A. Vishnu, S. Bhalerao, and H. J. Pandya, "Electronic nose: a non-invasive technology for breath breath analysis of diabetes and lung cancer patients", J. Breath Res., Vol. 13, No. 2, p. 024001, 2019.
  16. A. M. Diskin, P. Spanel, and D. Smith, "Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days", Physiol. Meas., Vol. 24, No. 1, pp. 107-119, 2003. https://doi.org/10.1088/0967-3334/24/1/308
  17. C. Deng, J. Zhang, X. Yu, W. Zhang, and X. Zhang, "Determination of acetone in human breath by gas chromatography-mass spectrometrt and solid-phase microextraction with on-fiber derivatization", J. Chromatogr. B., Vol. 810, No. 2, pp. 269-275, 2004. https://doi.org/10.1016/S1570-0232(04)00657-9
  18. T. Ligor, L. Pater, and B. Buszewski, "Application of an artificial neural network model for selection of potential lung cancer biomarkers", J. Breath Res., Vol. 9, No. 2, p. 027106, 2015.
  19. Y. Saalberg and M. Wolff, "VOC breath biomarkers in lung cancer", Clin. Chim. Acta., Vol. 459, pp. 5-9, 2016. https://doi.org/10.1016/j.cca.2016.05.013
  20. G. Rocco, G. Pennazza, M. Santonico, F. Longo, R. Rocco, P. Crucitti, and R. A. Incalzi, "Breathprinting and Early Diagnosis of Lung Cancer", J. Thorac. Oncol., Vol. 13, No. 7, pp. 883-894, 2018. https://doi.org/10.1016/j.jtho.2018.02.026
  21. N. Kim, S. Choi, D. Yang, J. Bae, J. Park, and I. Kim, "Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer", Sens. Actuators. B. Chem., Vol. 193, pp. 574-581, 2014. https://doi.org/10.1016/j.snb.2013.12.011
  22. W. Koo, S. Choi, S. Kim, J. Jang, H. L. Tuller, and I. Kim, "Heterogeneous Sensitization of Metal-Organic Framework Driven Metal@Metal Oxide Complex Catalysts on an Oxide Nanofiber Scaffold Toward Superior Gas Sensors", J. Am. Chem. Soc., Vol. 138, No. 40, pp. 13431-13437, 2016. https://doi.org/10.1021/jacs.6b09167
  23. J. Lee, D. Kim, H. Lee, H. Park, A. Ma, S. Choi, and D. Lee, "Sonochemcial synthesis of HKUST-1-based CuO decorated with Pt nanoparticles for formaldehyde gas-sensor applications", Sens. Actuators. B. Chem., Vol. 292, pp. 289-296, 2019 https://doi.org/10.1016/j.snb.2019.04.062
  24. R. Majidi and M. Nadafan, "Detection of exhaled gas byγ-graphyne and twin-graphene for early diagnosis of lung cancer: A density functional theory study", Phys. Lett. A., Vol. 384, No. 1, p. 126036, 2020.
  25. G. Gregis, J. B. Sanchez, I. Bezverkhyy, G. Weber, F. Berger, V. Fierro, J. P. Bellat, and A. Celzard, "Detection and quantification of lung cancer biomarkers by a microanalytical device using a single metal oxide-based gas sensor", Sens. Actuators. B. Chem., Vol. 255, pp. 391-400, 2018. https://doi.org/10.1016/j.snb.2017.08.056
  26. J. Lee, C. Lim, H. Song, S. Choi, and D. Lee, "A highly smart MEMS acetone gas sensors in array for diet-monitoring applications", Micro. Nano. Sys. Lett., Vol. 9, No. 1, pp. 10(1)-10(6), 2021. https://doi.org/10.1186/s40486-020-00128-7
  27. D. D. Orbe, H. Park, M. Kwack, H. Lee, D. Kim, J. Lim, I, Park, M. Sohn, S. Lim, and D. Lee, "Breath analyzer for personalized monitoring of exercise-induced metabolic fat burning", Sens. Actuators. B. Chem., Vol. 369, p. 132192, 2022.
  28. T. Saidi, O. Zaim, M. Moufid, N. E. Bari, R. Ionescu, and B. Bouchikhi, "Exhaled breath analysis using electronic nose and gas chromatography-mass spectrometry for noninvasive diagnosis of chronic kidney disease, diabetes mellitus and heathy subjects", Sens. Actuators. B. Chem., Vol. 257, pp. 178-188, 2018. https://doi.org/10.1016/j.snb.2017.10.178
  29. F. A. Bahos, A. S. Vidal, C. S. Perez, J. M. Saniger, I. Gracia, M. M. Saniger-Alba, and D. Matatagui, "ZIF Nanocrystal-Based Surface Acoustic Wave (SAW) Electronic Nose to Detect Diabetes in Human Breath", Biosensors, Vol. 9, No. 1, pp. 4(1)-4(13), 2019. https://doi.org/10.3390/bios9010004
  30. A. Gupta, T. S. Singh, and R. D. S. Yadava, "MEMS sensor array-based electronic nose for breath analysis-a simulation study", J. Breath Res., Vol. 13, No. 1, p. 016003, 2019.
  31. Q. Chen, Z. Chen, D. Liu, Z. He, and J. Wu, "Constructing E-nose Using Metal-Ion-Induced Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath", ACS Appl. Mater. Interfaces, Vol. 12, No. 15, pp. 17713-17724, 2020. https://doi.org/10.1021/acsami.0c00720
  32. W. Li, H. Liu, D. Xie, Z. He, and X. Pi, "Lung Cancer Screening Based on Type-different Sensor Arrays", Sci. Rep., Vol. 7, No. 1, pp. 1969(1)-1969(12), 2017. https://doi.org/10.1038/s41598-016-0028-x
  33. A. Kononov, B. Korotetsky, I. Jahatspanian, A. Gubal, A. Vasiliev, A. Arsenjev, A. Nefedov, A. Barchuk, I. Gorbunov, K. Kozyrev, A. Rassadina, E. Iakovleva, M. Sillanpaa, Z. Safaei, N. Ivanenko, N. Stolyarova, V. Chuchina, and A. Ganeev, "Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer". J. Breath Res., Vol. 14, No. 1, p. 016004, 2020.
  34. X. Zhong, D. Li, W. Du, M. Yan, Y. Wang, D. Huo, and C. Hou, "Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening", Anal. Bioanal. Chem., Vol. 410, No. 16, pp. 3671-3681, 2018. https://doi.org/10.1007/s00216-018-0948-3
  35. J. Chang, D. Lee, S. Ban, J. Oh, M. Jung, S. Kim, S. Park, K. Persaud, and S. Jheon, "Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system", Sens. Actuators. B. Chem., Vol. 255, pp. 800-807, 2018. https://doi.org/10.1016/j.snb.2017.08.057