DOI QR코드

DOI QR Code

Adaption of Phenological Eventsin Seoul Metropolitan and Suburbsto Climate Change

기후변화에 따른 수도권 생물계절 반응 변화에 관한 연구

  • Hyomin Park (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Minkyung Kim (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Sangdon Lee (Department of Environmental Science and Engineering, Ewha Womans University)
  • 박효민 (이화여자대학교 환경공학과) ;
  • 김민경 (이화여자대학교 환경공학과) ;
  • 이상돈 (이화여자대학교 환경공학과)
  • Received : 2022.12.02
  • Accepted : 2023.02.02
  • Published : 2023.02.28

Abstract

The rapid advance of technology has accelerated global warming. As 50.4 percent of South Korea's population is concentrated in the Seoul Metropolitan Area, which has become a considerable emitter of greenhouse gases, the city's average temperature is expected to increase more rapidly than in other areas in the country. A rise in the average temperature would affect everyday life and urban ecology; thus, appropriate measures to cope with the forthcoming disaster are in need. This study analyzed the changes in plant phenological phases from the past to the present based on temperatures (average temperature of Feb, Mar, April) observed in seven different weather stations nearthe Seoul Metropolitan Area (Ganghwa, Seoul, Suwon, Yangpyeong, Icheon, Incheon, and Paju) and the first flowering dates of Plum tree (Prunus mume), Korean forsythia (Forsythia koreana), Korean rosebay (Rhododendron mucronulatum), Cherry tree (Prunus serrulate), Peach tree (Prunus persica), and Pear tree (Pyrus serotina). Then, RCP (Representative Concentration Pathways) 2.6 and 8.5 scenarios were used to predict the future temperature in the Seoul Metropolitan Area and how it will affect plant phenological phases. Furthermore, the study examined the differences in the flowering dates depending on various strategies to mitigate greenhouse gases. The result showed that the rate of plant phenological change had been accelerated since the 1900s.If emission levels remain unchanged, plants will flower from 18 to 29 earlier than they do now in the Seoul Metropolitan Area, which would be faster than in other areas in the country. This is because the FFD (First Flowering Date), is highly related to temperature changes. The Seoul Metropolitan Area, which has been urbanized more rapidly than any other areas, is predicted to become a temperature warming, forcing the FFDs of the area to occur faster than in the rest of the country. Changes in phenology can lead to ecosystem disruption by causing mismatches in species interacting with each otherin an ecosystem. Therefore, it is necessary to establish strategies against temperature warming and FFD change due to urbanization.

산업의 발달로 인해 지구의 온도는 계속해서 상승하고 있으며, 우리나라의 수도권은 인구의 50.4%가 밀집해 있다. 그러므로 다른 지역에 비해 온실가스의 배출량이 많고 이로 인한 도시의 온도 상승이 높을 것으로 예상된다. 이러한 도시의 온도 상승은 도시 생태계 및 인간의 생활에 영향을 미치므로 이에 대한 대책 수립이 필요하다. 그러므로 본 연구는 수도권 7개 관측소(강화, 서울, 수원, 양평, 이천, 인천, 파주)에서 관측된 2-4월 평균온도와 매화(Prunus mume), 개나리(Forsythia koreana), 진달래(Rhododendron mucronulatum), 벚나무(Prunus serrulate), 복숭아(P. persica), 배나무(Pyrus serotina)의 개화일을 이용하여 과거부터 현재까지 도시화로 인한 식물계절의 변화를 분석하였다. 그리고 두개의 극단적인 RCP(Representative Concentration Pathways) 시나리오인 RCP 2.6 및 RCP 8.5 시나리오를 이용하여 향후 수도권의 미래 기후를 예측하고 이에 따른 식물계절의 반응을 예측하여 온실가스 저감 정책의 차이에 따른 식물계절 개화 시기의 차이를 분석하였다. 그 결과 1900년대부터 2019년까지 식물계절은 앞당겨지고 있으며, 지금과 같은 온실가스의 배출이 이뤄질 경우 수도권의 FFD (first flowering date)는 현재보다 18-29일 앞당겨지고, 이는 전국 평균 FFD보다 더 빨라지는 것을 확인할 수 있었다. 수도권의 FFD는 더 빠를 것으로 예상되는데, FFD는 온도변화와 상관관계 높기 때문이다. 식물계절의 변화는 생태계에서 서로 상호작용하는 종들의 먹이사슬의 불일치를 야기하여 생태계의 파괴로 이어질 수 있다. 그러므로 도시화로 인한 온도 증가와 이로 인해 발생하는 FFD 변화에 대한 대책 마련이 필요하다.

Keywords

Acknowledgement

본 연구는 한국연구재단(KRF-2021R1A2C1011213), 서울녹색환경지원센터(SGEC-2022) 및 한국환경산업기술원(MOE-2021003360002, 2020002990006, and 2022003640003)의 지원으로 연구되었습니다.

References

  1. Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD. 2011. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 333: 1024-1026. https://doi.org/10.1126/science.1206432
  2. Fitter AH, Fitter RSR, Harris ITB, Williamson MH. 1995. Relationships between first flowering date and temperature in the flora of a locality in central England. Functional Ecology: 55-60.
  3. IPCC Climate Change. 2007. The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  4. IPCC Climate change. 2014. Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: Cambridge University Press.
  5. IPCC Climate Change. 2018. Global warming of 1.5℃. World Meteorological Organization: Geneva, Switzerland.
  6. Kim JH, Yun EJ, Kim DJ, Kang D, Seo, BH, Shim KM. 2020. Evaluation of Regional Flowering Phenological Models in Niitaka Pear by Temperature Patterns. Korean Journal of Agricultural and Forest Meteorology 22(4): 268-278. [Korean Literature] https://doi.org/10.5532/KJAFM.2020.22.4.268
  7. Kim M, Lee J, Sung K, Lim C, Hwang W, Hyun S. 2022. Potential Impacts of Climate Change on Water Temperature of the Streams in Han-River Basin. Journal of Korean Society on Water Environment 38(1): 19-30. [Korean Literature] https://doi.org/10.15681/KSWE.2022.38.1.19
  8. Kim S, Kim TK, Yoon S, Jang K., Lim H, Lee WY, Won M, Lim JH, Kim HS. 2021. Recent changes in bloom dates of Robinia pseudoacacia and bloom date predictions using a process-based model in South Korea. Journal of Korean Society of Forest Science, 110(3): 322-340. [Korean Literature] https://doi.org/10.14578/JKFS.2021.110.3.322
  9. Korea Meteorological Administration. 2022, climate change scenario, [cited 2022 Nov 11]. Available from: http://www.climate.go.kr/ [Korean Literature]
  10. Lechowicz MJ. 1995. Seasonality of flowering and fruiting in temperate forest trees. Canadian Journal of Botany 73(2): 175-182. https://doi.org/10.1139/b95-021
  11. Lee HK, Lee SJ, Kim MK, Lee SD. 2020. Prediction of plant phenological shift under climate change in South Korea. Sustainability 12(21): 9276.
  12. Lee J, Ahn JB, Jeong HG. 2016. A Study on the Method for Estimating the 30 m-Resolution Daily Temperature Extreme Value Using PRISM and GEV Method. Atmosphere 26(4): 697-709. [Korean Literature] https://doi.org/10.14191/ATMOS.2016.26.4.697
  13. Lee K, Kim Y, Sung HC, Ryu J, Jeon SW. 2020. Trend analysis of urban heat island intensity according to urban area change in Asian mega cities. Sustainability 12(1): 112.
  14. Lee KM, Kwon WT, Lee SH. 2009. A study on plant phenological trends in South Korea. Journal of the Korean Association of Regional Geographers 15(3): 337-350. [Korean Literature]
  15. Lee SD. 2017. Global warming leading to phenological responses in the process of urbanization, South Korea. Sustainability 9(12): 2203.
  16. Lu P, Yu Q, Liu J, Lee X. 2006. Advance of tree-flowering dates in response to urban climate change. Agricultural and Forest Meteorology 138: 120-131. https://doi.org/10.1016/j.agrformet.2006.04.002
  17. Miller-Rushing AJ, Primack RB. 2008. Global warming and flowering times in Thoreau's Concord: a community perspective. Ecology 89(2): 332-341. https://doi.org/10.1890/07-0068.1
  18. Ministry of Land, Infrastructure and Transport. 2022. Metropolitan Area Status.
  19. National Institute of Meteorological Science. 2005. 100-Year Changes in Climate on the Korean Peninsula and Future Prospects.
  20. Neil K, Wu J. 2006. Effects of urbanization on plant flowering phenology: a review. Urban Ecosystems 9(3): 243-257. https://doi.org/10.1007/s11252-006-9354-2
  21. Sparks TH, Jeffree EP, Jeffree CE. 2000. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. International Journal of Biometeorology 44(2): 82-87. https://doi.org/10.1007/s004840000049
  22. Szolgay J, Parajka J, Kohnova S, Hlavcova K. 2009. Comparison of mapping approaches of design annual maximum daily precipitation. Atmospheric Research 92(3): 289-307. https://doi.org/10.1016/j.atmosres.2009.01.009
  23. UN-Hablitat. 2011. Cities and Climate Change. Stylus Pub Llc, Washington.
  24. Walkovszky A. 1998. Changes in phenology of the locust tree (Robinia pseudoacacia L.) in Hungary. International Journal of Biometeorology 41(4): 155-160. https://doi.org/10.1007/s004840050069