DOI QR코드

DOI QR Code

Challenges for the realization of carbon neutrality and air pollution improvement in major Northeast Asian countries: The importance of transitioning to eco-friendly EV industry and the necessity of developing lightweight materials

  • 투고 : 2023.01.10
  • 심사 : 2023.01.25
  • 발행 : 2023.02.28

초록

Diseases caused by air pollution and abnormal climate are occurring worldwide due to global warming. Accordingly, the international community has established a strategy to respond to climate change, and major countries have shifted their economic policies to eco-friendly industries. In this study, we investigate the current status of the renewable energy industry and that of responses to carbon neutrality and PM2.5 (air pollution) in the three major Northeast Asian countries of Japan, Korea, and China, covering changes in the corporate perceptions of Environment, Social, Governance and RE100. In more detail, the three major Northeast Asian countries, referred to as the climate villains in the international community, explain the importance of successful entry into the electric vehicles (EV) industry for a rapid transition to an eco-friendly industry. Moreover, we study the application of lightweight materials for vehicles to improve mileage in the EV industry and technical problems to be solved in the future.

키워드

참고문헌

  1. C. Huntingford, M.S. Williamson, F.J.M.M. Nijsse, CMIP6 climate models imply high committed warming, Clim. Change, 162 (2020) 1515-1520. https://doi.org/10.1007/s10584-020-02849-5
  2. I. Lopez, E. Ibarra, A. Matallana, J. Andreu, I. Kortabarria, Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges, Renewable Sustainable Energy Rev., 114 (2019) 109336.
  3. J.M. Lao, F.G. Montoya, M.G. Montoya, Electric vehicles in Spain: An overview of charging systems, Renewable Sustainable Energy Rev., 77 (2017) 970-983. https://doi.org/10.1016/j.rser.2016.11.239
  4. O.V. Vliet, A.S. Brouwer, T. Kuramochi, Energy use, cost and CO2 emissions of electric cars, J. Power Sources, 196 (2011) 2298-2310. https://doi.org/10.1016/j.jpowsour.2010.09.119
  5. D.W. Dockery, C.A. Pope, Acute respiratory effects of particulate air pollution, Annu. Rev. Public Health, 15 (1994) 107-132. https://doi.org/10.1146/annurev.pu.15.050194.000543
  6. W.N. Rom, J.M. Samet, Small particles with big effects, Am. J. Respir. Crit. Care Med., 173 (2006) 365-366. https://doi.org/10.1164/rccm.2601003
  7. K. Donaldson, The biological effects of coarse and fine particulate matter, Occup. Environ. Med., 60 (2003) 313-314. https://doi.org/10.1136/oem.60.5.313
  8. D.A. Ghelerter, L.D. Robertson, Effect of the airocide APS-200 PM 2.5 photocatalytic oxidation (PCO) unit on PM 2.5, Batta Technonology (2016).
  9. G. Hoek, R.M. Krishnan, R. Beelen, Longterm air pollution exposure and cardiorespiratory mortality: a review, Environ. health, 12 (2013) 1-16. https://doi.org/10.1186/1476-069X-12-1
  10. P. Morone, L. Cottoni, F. Giudice, Biofuels: Technology, economics, and policy issues, Handbook of biofuels production. Woodhead Publishing, (2023). 55-92.
  11. L. Uk, IEA, World energy outlook 2020, KEPCO J. Electr. Power Energy, 7 (2021) 25-30. https://doi.org/10.18770/KEPCO.2021.07.01.025
  12. J. Fagerberg, B.A. Lundvall, M. Srholec, Global value chains, national innovation systems and economic development, Eur. J. Dev. Res., 30 (2018) 533-556. https://doi.org/10.1057/s41287-018-0147-2
  13. S. Stone, M. Mikic, M. Agyeben, W. Anukoonwattaka, Asia-pacific trade and investment report 2015: Supporting participation in value Chains, ESCAP 2015 (2015).
  14. D. Rodrik, New technologies, global value chains, and developing economies, Natl. Bur. Econ. Res., (2018) 25164.
  15. C.A.P. Iii, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, Jama 287 (2002) 1132-1141. https://doi.org/10.1001/jama.287.9.1132
  16. S. Batterman, Temporal and spatial variation in allocating annual traffic activity across an urban region and implications for air quality assessments, Transp. Res. D Transp. Environ., 41 (2015) 401-415. https://doi.org/10.1016/j.trd.2015.10.009
  17. N. Zikova, Y. Wang, F. Yang, X. Li, M. Tian, On the source contribution to Beijing PM2. 5 concentrations, Atmos. Environ., 134 (2016) 84-95. https://doi.org/10.1016/j.atmosenv.2016.03.047
  18. P. Pant, R.M. Harrison, Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review, Atmos. Environ., 77 (2013) 78-97. https://doi.org/10.1016/j.atmosenv.2013.04.028
  19. D. Browne, M.O'. Mahony, B. Caulfield, How should barriers to alternative fuels and vehicles be classified and potential policies to promote innovative technologies be evaluated?, J. Clean. Prod., 35 (2012) 140-151. https://doi.org/10.1016/j.jclepro.2012.05.019
  20. A.R. Bhatti, Z. Salam, M.J.B.A. Aziz, K.P. Yee, Electric vehicles charging using photovoltaic: Status and technological review, Renewable Sustainable Energy Rev., 54 (2016) 34-47. https://doi.org/10.1016/j.rser.2015.09.091
  21. M.S. Kumar, S.T. Revankar, Development scheme and key technology of an electric vehicle: An overview, Renewable Sustainable Energy Rev., 70 (2017) 1266-1285. https://doi.org/10.1016/j.rser.2016.12.027
  22. M. Shamshirband, J. Salehi, F.S. Gazijahani, Decentralized trading of plug-in electric vehicle aggregation agents for optimal energy management of smart renewable penetrated microgrids with the aim of CO2 emission reduction, J. Clean. Prod., 200 (2018) 622-640. https://doi.org/10.1016/j.jclepro.2018.07.315
  23. J.Y. Yong, V.K. Ramachandaramurthy, K.M. Tan, A review on the state-ofthe-art technologies of electric vehicle, its impacts and prospects, Renewable Sustainable Energy Rev., 49 (2015) 365-385. https://doi.org/10.1016/j.rser.2015.04.130
  24. A.M. Andwari, A. Pesiridis, S. Rajoo, A review of battery electric vehicle technology and readiness levels, Renewable Sustainable Energy Rev., 78 (2017) 414-430. https://doi.org/10.1016/j.rser.2017.03.138
  25. L. Ahmadi, A. Yip, M. Fowler, S.B. Young, Environmental feasibility of reuse of electric vehicle batteries, Sustain. Energy Technol. Assess., 6 (2014) 64-74. https://doi.org/10.1016/j.seta.2014.01.006
  26. Y. Kwon, S. Son, K. Jang, User satisfaction with battery electric vehicles in south korea, Transp. Res. D Transp. Environ., 82 (2020) 102306.
  27. L. Li, Z. Wang, L. Chen, Z. Wang, Consumer preferences for battery electric vehicles: A choice experimental survey in China, Transp. Res. D Transp. Environ., 78 (2020) 102185.
  28. T. Zachariadis, After'dieselgate': Regulations or economic incentives for a successful environmental policy, Atmos. Environ., 138 (2016) 1-3. https://doi.org/10.1016/j.atmosenv.2016.04.045
  29. G. Xia, L. Cao, G. Bi, A review on battery thermal management in electric vehicle application, J. Power Sources, 367 (2017) 90-105. https://doi.org/10.1016/j.jpowsour.2017.09.046
  30. S.H. Hong, D.S. Jang, S. Park, S. Yun, Y. Kim, Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles, Appl. Therm. Eng., 173 (2020) 115213.
  31. N.C. Onat, M. Kucukvar, O. Tatari, Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States, Appl. Energy, 150 (2015) 36-49. https://doi.org/10.1016/j.apenergy.2015.04.001
  32. M Wang, The greenhouse gases, regulated emissions, and energy use in transportation (GREET) model: Version 1.5, Cntr. Transp. Res., Argonne National Laboratory (2008).
  33. S.K. Jeoung, J.U. Ha, Lightweighting technology development and trends in automotive, Auto J., 40 (2018) 30-34.
  34. N. Lutsey, Review of technical literature and trends related to automobile mass-reduction technology, Institute of Transportation Studies, UC Davis (2010).
  35. S.H. Lee, H. Yashiro, S.Z.K. Chu, Fabrication of micro conductor pattern on polymer material by laser induced surface activation technology, Korean J. Mater. Res., 30 (2020) 327-332. https://doi.org/10.3740/MRSK.2020.30.7.327
  36. S.H. Lee, H. Yashiro, S.Z.K. Chu, Improvement of joining strength betweenaluminum alloy and polymer by two-step anodization, J. Korean Inst. Surf. Eng., 53 (2020) 144-152.
  37. S.H. Lee, H. Yashiro, S.Z.K. Chu, Effect of silane coupling treatment on the joining and sealing performance between polymer and anodized aluminum alloy, Korean J. Mater. Res., 31 (2021) 122-131. https://doi.org/10.3740/MRSK.2021.31.3.122
  38. M. Yellishetty, G.M. Mudd, P.G. Ranjith, Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects, Environ. Sci. Policy, 14 (2011) 650-663. https://doi.org/10.1016/j.envsci.2011.04.008
  39. F.C. Campbell.,ed, Fatigue and fracture: understanding the basics, ASM International, (2012)
  40. F. Czerwinski, Current trends in automotive lightweighting strategies and materials, Mater., 14 (2021) 6631.
  41. T. Sakurai, The latest trends in aluminum alloy sheets for automotive body panels, KOBELCO Technol. Rev., 28 (2008) 22-28.
  42. R.S. Long, E. Boettcher, D. Crawford, Current and future uses of aluminum in the automotive industry, Jom 69 (2017) 2635-2639. https://doi.org/10.1007/s11837-017-2554-9
  43. A. Mussatto, I.U.I. Ahad, R.T. Mousavian, Advanced production routes for metal matrix composites, Eng. Rep., 3 (2021) e12330.
  44. S. Ehrenberger, H. Dieringa, H.E. Friedrich, Life cycle assessment of magnesium components in vehicle construction, DLR (2013) 1-109.
  45. S.H. Lee, H. Yashiro, S.Z.K. Chu, Electrolyte temperature dependence on the properties of plasma anodized oxide films formed on AZ91D magnesium alloy, Korean J. Mater. Res., 29 (2019) 288-296. https://doi.org/10.3740/mrsk.2019.29.5.288
  46. S.H. Lee, H. Yashiro, S.Z.K. Chu, Effect of power mode of plasma anodization on the properties of formed oxide films on AZ91D magnesium alloy, Korean J. Mater. Res., 28 (2018) 544-550. https://doi.org/10.3740/MRSK.2018.28.10.544
  47. S.H. Lee, H. Yashiro, K. Aoki, H. Nanao, S.Z.K. Chu, Physical properties of oxide films formed by plasma anodization on Mg alloy, Korean J. Mater. Res., 29 (2019) 657-663. https://doi.org/10.3740/mrsk.2019.29.11.657
  48. S.H. Lee, H. Yashiro, S.Z.K. Chu, Fabrication of plasma electrolytic oxidation coatings on magnesium AZ91D casting alloys, J. Korean Inst. Surf. Eng., 50 (2017) 432-438. https://doi.org/10.5695/JKISE.2017.50.6.432
  49. F. Czerwinski, Magnesium injection molding, New York Springer (2008) 135-145.
  50. A. Kumanan, S. Varadarajan, K. Narayanan, Lightweighting in electric vehicles: Review of the design strategies based on patents and publications, Design for Tomorrow, 3 (2021) 263-272.
  51. D. Wagner, J. Conklin, M. Zaluzec, T. Skszek, MMLV: Life cycle assessment (2015-01-1616), Ieeexplore (2015) 113-125.
  52. G. Kopp, E. Beeh,New multi-material design concepts and high integration light metal applications for lightweight body structures, Mater. Sci. Forum, 638 (2010) 437-442. https://doi.org/10.4028/www.scientific.net/MSF.638-642.437
  53. J.W. Bibber, Zincate free plating of beryllium, magnesium, aluminum and their alloys, Plating Surf. Finish., (2010) 38.
  54. B. Wielage, G. Alisch, T. Lampke, Anodizing-a key for surface treatment of aluminium, Key Eng. Mater., 384 (2008) 263-281. https://doi.org/10.4028/www.scientific.net/KEM.384.263
  55. S.D. Brown, K.J. Kuna, T.B. Van, Anodic spark deposition from aqueous solutions of NaAlO2 and Na2SiO3, J. Am. Ceram. Soc., 54 (1971) 384-390. https://doi.org/10.1111/j.1151-2916.1971.tb12328.x
  56. M. Kadleckova, A. Minarik, P. Smolka, A. Mracek, Preparation of textured surfaces on aluminum-alloy substrates, Materials, 12 (2018) 109.
  57. R.L. Twite, G.P. Bierwagen, Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys, Prog. Org. Coat., 33 (1998) 91-100. https://doi.org/10.1016/S0300-9440(98)00015-0
  58. A.M.M. Jani, D. Losic, N.H. Voelcker, Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications, Prog. Mater. Sci., 58 (2013) 636-704. https://doi.org/10.1016/j.pmatsci.2013.01.002
  59. X. Nie, A. Wilson, A. Leyland, A. Matthews, Deposition of duplex Al2O3/ DLC coatings on Al alloys for tribological applications using a combined microarc oxidation and plasma-immersion ion implantation technique, Surf. Coat. Technol., 131 (2000) 506-513. https://doi.org/10.1016/S0257-8972(00)00816-1
  60. Y.S. Kim, H.W. Yang, K.R. Shin, Y.G. Ko, D.H. Shin, Heat dissipation properties of oxide layers formed on 7075 Al alloy via plasma electrolytic oxidation, Surf. Coat. Technol., 269 (2015) 114-118. https://doi.org/10.1016/j.surfcoat.2015.01.059
  61. J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys-a critical review, J. Alloys Compd., 336 (2002) 88-113. https://doi.org/10.1016/S0925-8388(01)01899-0
  62. E. Aghion, B. Bronfin, D. Eliezer, The role of the magnesium industry in protecting the environment, J. Mater. Process. Technol., 117 (2001) 381-385. https://doi.org/10.1016/S0924-0136(01)00779-8
  63. G. Song, Recent progress in corrosion and protection of magnesium alloys, Adv. Eng. Mater., 7 (2005) 563-586. https://doi.org/10.1002/adem.200500013
  64. F.A. Lowenheim, J. Davis, Modern electroplating, J. Electrochem. Soc., 121 (1974) 397C.
  65. D.V. Renaux, E. Rocca, G. Henrion, Micro-arc oxidation of AZ91 Mg alloy: An in-situ electrochemical study, Electrochem. Commun., 31 (2013) 42-45. https://doi.org/10.1016/j.elecom.2013.02.023
  66. P. Kurze, J. Schreckenbach, T. Schwarz, W. Krysmann, Beschichten durch anodische oxidation unter Funkenentladung (ANOF), Metalloberflaeche 40 (1986) 539-540.
  67. A. Ghasemi, V.S. Raja, C. Blawert, W. Dietzel, Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy, Surf. Coat. Technol., 202 (2008) 3513-3518. https://doi.org/10.1016/j.surfcoat.2007.12.033
  68. J.A. Curran, T.W. Clyne, Thermo-physical properties of plasma electrolytic oxide coatings on aluminium, Surf. Coat. Technol., 199 (2005) 168-176.  https://doi.org/10.1016/j.surfcoat.2004.09.037