• Title/Summary/Keyword: GHG

Search Result 615, Processing Time 0.042 seconds

Estimation of GHG emission and potential reduction on the campus by LEAP Model (LEAP 모델을 이용한 대학의 온실가스 배출량 및 감축잠재량 분석)

  • Woo, Jeong-Ho;Choi, Kyoung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.409-415
    • /
    • 2012
  • Post-kyoto regime has been discussing with the GHG reduction commitment. GHG energy target management system also has been applied for the domestic measures in the country. Universities are major emission sources for GHG. It is very important for campus to built the GHG inventory system and estimate the potential GHG emission reduction. In general, GHG inventory on the campus was taken by the IPCC guidance with the classification of scope 1, 2, and 3. Electricity was the highest portion of GHG emission on the campus as 5,053.90 $tonsCO_2eq/yr$ in 2009. Manufacturing sector was the second high emission and meant GHG in laboratory. Potential GHG reduction was planned by several assumptions such as installation of occupancy sensor, exchanging LED lamp and photovoltaic power generation. These reduction scenarios was simulated by LEAP model. In 2020, outlook of GHG emission was estimated by 17,435.98 tons of $CO_2$ without any plans of reduction. If the reduction scenarios was applied in 2020, GHG emission would be 16,507.60 tons of $CO_2$ as 5.3% potential reduction.

A Study on Carbon Emission Credit Acquisition in Domestic Railroad Sector (국내 철도분야 탄소배출권 확보방안 연구)

  • Choi, Yo-Han;Lee, Cheul-Kyu;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2949-2951
    • /
    • 2011
  • It is expected that domestic railway vehicle operation companies may be subjected to GHG emission reduction when GHG emission system is enforced. This study aimed that reviewing on GHG emission system such as CDM, VCS and KCER, and analysing availability of GHG emission credit acquisition for railroad transportation sector. In order to estimate GHG emission credit, a GHG emission estimation methodology should be developed, which includes GHG emission baseline estimation and GHG emission monitoring method, MRV method and etc. Modal shift project, high speed train technology, straight lining project, mass transportation technology, operation optimization tehcnology and etc. may produce GHG emission credit.

  • PDF

Construction of Greenhouse Gas Inventory of Private Industry of Chungcheongbuk-do and Analysis of Greenhouse Gas Mitigation Technology (충청북도 민간 산업체에 대한 온실가스 인벤토리 구축 및 감축기술 분석)

  • Lim, Soo Min;Ahn, Joo Young;Jung, Cho Shi;Park, Jung Hoon
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • Greenhouse gas (GHG) emissions of private industry of Chungcheongbuk-do were estimated. GHG emissions were classified by industry and GHG emissions ratio of each industry of Chungcheongbuk-do was found. Characteristics of GHG emissions of Chungcheongbuk-do and GHG mitigation technology were analyzed. To calculate GHG emissions, equations proposed through GHG emissions calculation guidelines published by Korean Energy Agency in 2009 were used. As a result, GHG emissions ratio of cement, semiconductor, paper and petrochemical industry was about 73%, 16%, 5%, and 2% respectively. GHG mitigation technologies of cement, semiconductor and waste were investigated. For cement, amine technology, for semiconductor, scrubber system and for waste, land fill gas utilization were analyzed.

Forecast of Greenhouse Gas Emission by Policy of Waste Management in Korea (폐기물관리 정책변화에 따른 온실가스 배출량 예측)

  • Kim, Hyun-Sun;Kim, Dong-Sik;Yi, Seung-Muk
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.5
    • /
    • pp.343-350
    • /
    • 2008
  • Quantifying greenhouse gas (GHG) emissions in the waste sector is important to evaluating measures for reduction of GHG emissions. To forecast GHG emissions and identify potential emission reduction for GHG emissions, scenarios applied with environmental policy such as waste reduction and structural change of waste treatment were developed. Scenario I estimated GHG emissions under the business as usual (BAU) baseline. Scenario II estimated GHG emissions with the application of the waste reduction policy while scenario III was based on the policy of structural change of waste treatment. Scenario IV was based on both the policies of waste reduction and structural change of waste treatment. As for the different scenarios, GHG emissions were highest under scenarios III, followed by scenarios IV, I, and II. In particular, GHG emissions increased under scenario III due to the increased GHG emissions from the enhanced waste incineration due to the structural change of waste treatment. This result indicated that the waste reduction is the primary policy for GHG reduction from waste. GHG emission from landfill was higher compared to those from incineration. However, the contribution of GHG emission from incineration increased under scenario III and IV. This indicated that more attention should be paid to the waste treatment for incineration to reduce GHG emissions.

Estimation of greenhouse gas (GHG) emission from wastewater treatment plants and effect of biogas reuse on GHG mitigation

  • Chang, Jin;Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.173-183
    • /
    • 2014
  • A comprehensive mathematical model was developed for this study to estimate on-site and off-site GHG emissions from wastewater treatment plants (WWTPs). The model was applied to three different hybrid WWTPs (S-WWTP, J-WWTP, and T-WWTP) including anaerobic, anoxic, and aerobic process, located in Seoul City, South Korea. Overall on-site and off-site GHG emissions from S-WWTP, J-WWTP, and T-WWTP were $305,253kgCO_2e/d$, $282,682kgCO_2e/d$, and $117,942kgCO_2e/d$, respectively. WWTP treating higher amounts of wastewater produced more on-site and off-site GHG emissions. On average, the percentage contribution of on-site and off-site emissions was 3.03% and 96.97%. The highest amount of on-site GHG emissions was generated from anoxic process and the primary on-site GHG was nitrous oxide ($N_2O$). Off-site GHG emissions related to electricity consumption for unit operation was much higher than that related to production of chemicals for on-site usage. Recovery and reuse of biogas significantly reduced the total GHG emissions from WWTPs. The results obtained from this study can provide basic knowledge to understand the source and amount of GHG emissions from WWTPs and strategies to establish lower GHG emitting WWTPs.

A Study on QA/QC Method for GHG Inventory in the Railroad Construction Sector (철도건설현장의 온실가스 인벤토리 QA/QC 방안 연구)

  • Lee, Jae-Young;Jung, Woo-Sung;Kim, Yong-Ki;Hwang, In-Hawn
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.511-514
    • /
    • 2011
  • The impact of greenhouse gas (GHG) emissions is the global issue over the world. Korean government has presented various policies to induce GHG reduction for the industries with high energy consumption such as power generation and chemistry. Construction sector has produced a large amount of GHG emissions resulted in the energy consumption of heavy equipments and the use of materials. This study aims to suggest the QA (Quality Assurance) and QC (Quality Control) method to identify and quantify the GHG emissions released from heavy equipments in the railroad construction sector. Generally, the accuracy and reliability of GHG inventory is dependent on the data collection. Therefore, it is necessary to mange the detailed statements for the fuel consumption of heavy equipments and the quantity of work in the field. Also, the breakdown of GHG emission sources should be recorded from the design step of railroad infrastructures. Based on these data, the GHG reduction technologies and polices can be applied in railroad construction sector.

  • PDF

Development of Calculation Method on the GHG Emission of Railroad (철도부문 온실가스 배출량 산정 방법론 연구)

  • Lee, Jae-Young;Jung, Woo-Sung;Kwon, Tae-Soon;Kim, Hee-Man;Kang, Sung-Hae
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.828-830
    • /
    • 2009
  • In Korea, various efforts to cope with the Post-Kyoto system have been recently performed because a duty for the GHG(Greenhouse Gas) reduction may be allocated from 2013. Especially, the role of railroad has been strengthened to decrease total GHG emission of transportation system. Therefore, it is necessary to investigate the GHG emission and the reduction strategies of railroad. The purpose of this study was to develop the calculation method of GHG emission released from railroad. Main source of GHG emission was the energy consumption of railroad vehicle and infrastructure. Based on the emission factor and the equation reported in IPCC 2006 guideline, the total GHG emission of railroad was about 1.4 million tons CO2e in 2007. Using this calculation method, the GHG data of railroad can be calculated quantitatively and managed systematically in the future.

  • PDF

A Study on the Establishment of Greenhouse Gas Inventory in Korean Railroad (국내 철도분야의 온실가스 인벤토리 구축에 관한 연구)

  • Lee, Jae-Young;Jung, Woo-Sung;Cho, Young-Min;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1371-1373
    • /
    • 2008
  • Recently, the reduction of greenhouse gas (GHG) is the most important international issue. In order to control efficiently GHG emissions and reduction, it is essential to establish GHG inventory preferentially. The aim of this study was to establish the GHG inventory of Korean railroad. The GHG sources were divided into direct and indirect emissions. The GHG released from the operation of rolling stocks was classified according to operating line and the kind of car. Finally, the GHG emission of Korean railroad can be managed systematically using this GHG inventory.

  • PDF

Assessing greenhouse gas footprint and emission pathways in Daecheong Reservoir (대청댐 저수지의 온실가스 발자국 및 배출 경로 평가)

  • Min, Kyeong Seo;Chung, Se Woong;Kim, Sung Jin;Kim, Dong Kyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.785-799
    • /
    • 2022
  • The aim of this study was to characterize the emission pathways and the footprint of greenhouse gases (GHG) in Daecheong Reservoir using the G-res Tool, and to evaluate the GHG emission intensity (EI) compared to other energy sources. In addition, the change in GHG emissions was assessed in response to the total phosphorus (TP) concentration. The GHG flux in post-impoundment was found to be 262 gCO2eq/m2/yr, of which CO2 and CH4 were 45.7% and 54.2%, respectively. Diffusion of CO2 contributed the most, followed by diffusion, degassing, and bubbling of CH4. The net GHG flux increased to 510 gCO2eq/m2/yr because the forest (as CO2 sink) was lost after dam construction. The EI of Daecheong Reservoir was 86.8 gCO2eq/kWh, which is 3.7 times higher than the global EI of hydroelectric power, due to its low power density. However, it was remarkable to highlight the value to be 9.5 times less than that of coal, a fossil fuel. We also found that a decrease in TP concentration in the reservoir leads to a decrease in GHG emissions. The results can be used to improve understanding of the GHG emission characteristics and to reduce uncertainty of the national GHG inventory of dam reservoirs.

Analysis of Greenhouse Gas Emission and Abatement Potential for the Korean Waste Sector (한국의 폐기물부문의 온실가스 배출량 및 감축잠재량 분석)

  • Chung, Yongjoo;Kim, Hugon
    • Korean Management Science Review
    • /
    • v.33 no.4
    • /
    • pp.17-31
    • /
    • 2016
  • Waste sector has been a target of abatement policies by the most governments, even though its greenhouse gas (GHG) emission is not so high, since it is related to almost of other sectors. This study propose new GHG calculation equations which resolves logical contradiction of IPCC GL (Intergovernmental Panel on Climate Change Guideline) equations by including waste-to-energy effects. According to two GHG calculation equations, GHG emission inventory and BAU by the year 2050 have been computed. And GHG abatement potential and marginal cost for the five abatement policies carefully selected from the previous researches have been calculated for the year 2020. The policy that makes solid fuel like RDF from flammable wastes and uses them as combustion fuel of electricity generations has been found to be the most efficient and effective one among five policies. The cumulative abatement amount when five policies not mutually exclusive are applied sequentially has been reckoned.