DOI QR코드

DOI QR Code

윤활액이 담지된 나노다공성 표면의 최신 응용분야

Recent applications of lubricant-impregnated nanoporous surface : A Review

  • 한경완 (부경대학교 금속공학과) ;
  • 배기창 (부경대학교 금속공학과) ;
  • 이정훈 (부경대학교 금속공학과)
  • Kyeongwan Han (Department of Metallurgical Engineering, Pukyong National University) ;
  • Kichang Bae (Department of Metallurgical Engineering, Pukyong National University) ;
  • Junghoon Lee (Department of Metallurgical Engineering, Pukyong National University)
  • 투고 : 2023.02.17
  • 심사 : 2023.02.20
  • 발행 : 2023.02.28

초록

Lubricant-impregnated nanoporous surfaces (LIS), which is created by impregnating water-immiscible oil into nanoporous surface structure, have been explored considering wide range of application fields. Due to the lubricant impregnated in nanoporous structure, the surface shows extreme de-wetting with a high mobility of water droplets, so that various functionalities can be realized. The lubricant layer inhibits the contact of corrosive media to porous structure as well as metal substrate, thus the surface improves the corrosion resistance. The water on the surface freeze without any contact to solid porous structure, showing a low ice adhesion for de-icing an anti-icing. The extremely high mobility of water droplets on lubricant-impregnated porous surfaces also contributes the enhancement of condensation heat transfer as well as water harvesting from fog and moisture. Moreover, the bacteria adhesion on metal surface forming biofilms causing serious hygiene issues can be inhibited on the lubricantimpregnated surfaces. Despite of such superior functionalities, the lubricant-impregnated porous surface has a limitation of lubricant depletion by external flow of fluids. Therefore, extensive efforts to improve the durability of lubricant-impregnated surface are required for practical applications.

키워드

참고문헌

  1. V. Rupetsov, L. Kolaklieva, V. Chitanov, M. Angelov, R. Raychev, Z. Zlatanov, C. Pashinski, Deposition and tribomechanical study of nanolaminate Ti/TiN/AlTiSiM/(AlTiSiN/ TiAlSiN)n/AlTiSiN hard coating, IOP Publishing, 618 (2019) 012047-102053. 
  2. B. J. Xiao, Y. Chen, W. Dai, K. Y. Kwork, T. F. Zhang, Q. M. Wang, C. Y. Wang, K. H. Kim, Microstructure, mechanical properties and cutting performance of AlTiN coatings prepared via arc ion plating using the arc splitting technique, Surf. Coat. Technol., 311 (2017) 98-103.  https://doi.org/10.1016/j.surfcoat.2016.12.074
  3. C. Jeong, J. Lee, K. Sheppard, C. H. Choi, Airimpregnated nanoporous anodic aluminum oxide layers for enhancing the corrosion resistance of aluminum, Langmuir, 31(2015) 11040-11050.  https://doi.org/10.1021/acs.langmuir.5b02392
  4. G. Wang, S. Liu, S. Wei, Y. Liu, J. Lian, Q. Jiang, Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity, Sci. Rep., 6 (2016) 20933-20942.  https://doi.org/10.1038/srep20933
  5. C. J. Donahue, J. A. Exline, Anodizing and coloring aluminum alloys, J. Chem. Educ., 91 (2014) 711-715.  https://doi.org/10.1021/ed3005598
  6. M. Mirzaei, M. E. Bahrololoom, Influence of pulse currents on the nanostructure and color absorption ability of colored anodized aluminum, Vacuum, 99 (2014) 277-283.  https://doi.org/10.1016/j.vacuum.2013.06.019
  7. X. M. Li, D. Reinhoudt, M. C. Calama, Slippery liquid-infused porous surface for corrosion protection with self-healing property, Chem. Soc. Rev., 36 (2007) 1350-1368.  https://doi.org/10.1039/b602486f
  8. A.Marmur, The lotus effect: superhydrophobicity and metastability, Langmuir, 20 (2004) 3517-3519.  https://doi.org/10.1021/la036369u
  9. R. J. Daniello, N. E. Waterhouse, J. P. Rothstein, Drag reduction in turbulent flows over superhydrophobic surfaces, Phys. Fluids., 21 (2009) 085103-085103-9.  https://doi.org/10.1063/1.3207885
  10. D. Seo, C. Lee, Y. Nam, Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing, Langmuir, 30 (2014) 15468-15476.  https://doi.org/10.1021/la5041486
  11. R. Furstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir, 21 (2005) 956-961.  https://doi.org/10.1021/la0401011
  12. N. Miljkovic, E. N. Wang, Condensation heat transfer on superhydrophobic surfaces, MRS. Bulletin., 38 (2013) 397-406.  https://doi.org/10.1557/mrs.2013.103
  13. S. Alamri, V. Vercillo, A. I. A.Morales, F. Schell, M. Wetterwald, A. F. Lasagni, E. Bonaccurso, T. Kunze, Self-limited ice formation and efficient deicing superhydrophobic micro-structured airfoils through direct laser interference patterning, Adv. Mater. Interfaces., 7 (2020) 2001231-2001240.  https://doi.org/10.1002/admi.202001231
  14. J. Lengaigne, E. Bousser, S. Brown, P. Xing, F. Turcot, A. Dolatabadi, L. Martinu, J. E. K.Sapieha, In situ ice growth kinetics on water-repellent coatings under atmospheric icing conditions, Surf. Coat. Technol., 399 (2020) 126136-126147.  https://doi.org/10.1016/j.surfcoat.2020.126136
  15. M. A. Sarshar, D. Song, C. Swarctz, J. Lee, C. Choi, Anti-icing or deicing: Icephobicities of superhydrophobic surfaces with hierarchical structures, Langmuir, 34 (2018) 13821-13827.  https://doi.org/10.1021/acs.langmuir.8b02231
  16. E. Vazirinasab, R. Jafari, G. Momen, Application of superhydrophobic coatings as a corrosion barrier: A review, Surf. Coat. Technol., 341 (2018) 40-56.  https://doi.org/10.1016/j.surfcoat.2017.11.053
  17. S. Yang, R. Qiu, H. Song, P. Wang, Z. Shi, Y. Wang, Slippery liquid-infused porous based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application, Appl. Surf. Sci., 328 (2015) 491-500.  https://doi.org/10.1016/j.apsusc.2014.12.067
  18. J. Lee, Superhydrophobic and hydrophobic anodic aluminum anodic oxide layer: A review, J. Korean Inst. Surf. Eng, 51 (2018) 11-20.  https://doi.org/10.5695/JKISE.2018.51.1.11
  19. J. Li, E. Ueda, D. Paulssen, P. A. Levkin, Slippery lubricant-infused surfaces: properties and emerging applications, Adv. Funct. Mater., 29 (2019) 1802317-1802328.  https://doi.org/10.1002/adfm.201802317
  20. S. Martin, P. S. Brown, B. Bhushan, Fabrication techniques for bioinspired, mechanically-durable, superliquiphobic surfaces for water, oil, and surfactant repellency, Adv. Colloid. Interface. Sci 241 (2017) 1-23.  https://doi.org/10.1016/j.cis.2017.01.004
  21. A. Milionis, I. S. Bayer, E. Loth, Recent advances in oil-repellent surfaces, Int. Mater. Rev., 61 (2016) 101-126.  https://doi.org/10.1080/09506608.2015.1116492
  22. A. Eifert, D. Paulssen, S. N. Varanakkottu, T. Baier, S. Hardt, Simple fabrication of robust water-repellent surfaces with low contact-angle hysteresis based om impregnation, Adv. Mater. Interfaces, 1 (2014) 1300138-1300143.  https://doi.org/10.1002/admi.201300138
  23. A. B. D. Cassie, S. Baxter, Wetability of porous surfaces, Phys. Chem. Chem. Phys., 40 (1944) 546-551.  https://doi.org/10.1039/tf9444000546
  24. L. Guo, G. H. Tang, S. Kumar, Dynamic Wettability on the lubricant-impregnated surface: from nucleation to growth and coalescence, ACS Appl. Mater. Interfaces, 12 (2020) 26555-26565.  https://doi.org/10.1021/acsami.0c03018
  25. G. Mistura, M. Pierno Drop mobility on chemically heterogeneous and lubricantimpregnated surfaces, Adv. Phys. X., 2 (2017) 591-607.  https://doi.org/10.1080/23746149.2017.1336940
  26. J. D. Smith, R. Dhiman, S. Anand, E. R.Garduno, R. E. Cohen, G. H. McKinley, K. K. Varanasi, Drop mobility on lubricant-impregnated surfaces, Soft Matter, 9 (2013) 1772-1780.  https://doi.org/10.1039/c2sm27032c
  27. P. S. Brown, B. Bhushan, Liquid-impregnated porous polypropylene surfaces for liquid repellency, J. Colloid Interface Sci., 487 (2017) 437-443.  https://doi.org/10.1016/j.jcis.2016.10.079
  28. M. R. Yousaf, B. S. Yilbas, H. Ali, Assessment of optical transmittance of oil impregnated and non-wetted surfaces in outdoor environment towards solar energy harvesting, Solar Energy, 163 (2018) 25-31.  https://doi.org/10.1016/j.solener.2018.01.079
  29. J. Lee, M. H. Lee, C. H. Choi, Design of robust lubricant-infused surfaces for anti-corrosion, ACS Appl. Mater. Interfaces., 14 (2022) 2411-2423.  https://doi.org/10.1021/acsami.1c22587
  30. J. Lee, S. Wooh, C. H. Choi, Fluorocarbon lubricant impregnated nanoporous oxide for omnicorrosion-resistant stainless steel, J. Colloid. Interface. Sci., 558 (2020) 301-309.  https://doi.org/10.1016/j.jcis.2019.09.117
  31. B. Qi, X. Yang, X. Wang, Ultraslippery/hydrophilic patterned surfaces for efficient fog harvest, Colloids. Surf. A. Physicochem. Eng. Asp., 640 (2022) 128398-128406.  https://doi.org/10.1016/j.colsurfa.2022.128398
  32. S. Sunny, N. Vogel, C. Howell, T. L. Vu, J. Aizenberg, Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition, Adv. Funct. Mater., 24 (2014) 6658-6667.  https://doi.org/10.1002/adfm.201401289
  33. P. Yu, Z. Lian, J. Xu, H. Yu, Slippery liquid infused porous surfaces with corrosion resistance potential on aluminum alloy, RSC Adv., 11 (2021) 847-855. 
  34. J. Joo, M. Kang, H.S. Moon, S. Wooh, J. Lee, Design and experimental studies of selfhealable anti-corrosion coating: Passivation of metal surfaces by silicone oil impregnated porous oxides, Surf. Coat. Technol., 404 (2020) 126595-126602.  https://doi.org/10.1016/j.surfcoat.2020.126595
  35. A. B. Tesler, P. Kim, S. Kolle, C. Howell, O. Ahanotu, J. Aizenberg, Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel, Nat. Commun., 6 (2015) 8649-8658.  https://doi.org/10.1038/ncomms9649
  36. Y. Tuo, H. Zhang, W. Chen, X. Liu, Corrosion protection application of slippery liquidinfused porous surface based on aluminum foil, Appl. Surf. Sci., 423 (2017) 365-374.  https://doi.org/10.1016/j.apsusc.2017.06.170
  37. C. Haensch, S. Hoeppener, US Schubert, Chemical modification of self-assembled silane based monolayers by surface reactions, Chem. Soc. Rev., 39.6 (2010) 2323-2334.  https://doi.org/10.1039/b920491a
  38. J. Lee, Y. Jiang, F. Hizal, G. Ban, S. Jun, C. Choi, Durable omniphobicity of oilimpregnated anodic aluminum oxide nanostructured surfaces, J. Colloid. Interface. Sci., 553 (2019) 734-745.  https://doi.org/10.1016/j.jcis.2019.06.068
  39. A. Fredriksson, E. Ponten, T. Gordh, P. Eriksson, Neonatal exposure to a combination of N-methyl-d-aspartate and 𝛾-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits, Anesthesiology, 107 (2007) 427-436.  https://doi.org/10.1097/01.anes.0000278892.62305.9c
  40. F. Suja, B.K. Pramanik, S.M. Zain, Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper, Water. Sci. Technol., 60 (2009) 1533-1544.  https://doi.org/10.2166/wst.2009.504
  41. L. Chen, S. Park, J. Yoo, H. Hwang, H. Kim, J. Lee, J. Hong, S. Wooh, One-step fabrication of universal slippery lubricated surfaces, Adv. Mater. Interfaces., 7 (2020) 2000305. 
  42. C. J. Prakash, R. Prasanth, Recent trends in fabrication of nepenthes inspired SLIPs: Design strategies for self-healing efficient anti-icing surfaces, Surf. Interfaces., 21 (2020) 100678. 
  43. T.S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature, 477 (2011) 443-447.  https://doi.org/10.1038/nature10447
  44. K. Sakuraba, S. Kitano, D. Kowalski, Y. Aoki, H. Habazaki, Slippery liquid-infused porous surfaces on aluminum for corrosion protection with improved self-healing ability, ACS Appl. Mater. Interfaces., 13 (2021) 45089-45096.  https://doi.org/10.1021/acsami.1c13071
  45. J. Lee, S. Shin, Y. Jiang, C. Jeong, H. A. Stone, C. Choi, Oil-impregnated nanoporous oxide layer for corrosion protection with self-healing, Adv. Funct. Mater., 27 (2017) 1606040. 
  46. T. Xiang, M. Zhang, H. R. Sadig, Z. Li, M. Zhang, C. Dong, L. Yang, W. Chan, C. Li, Slippery liquid-infused porous surface for corrosion protection with self-healing property, Chem. Eng. J., 345 (2018) 147-155.  https://doi.org/10.1016/j.cej.2018.03.137
  47. P. Wang, Z. Lu, D. Zhang, Slippery liquidinfused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria, Corros. Sci., 93 (2015) 159-166.  https://doi.org/10.1016/j.corsci.2015.01.015
  48. L. Ma, Z. Zhang, L. Gao, Y. Liu, H. Hu, Bioinspired icephobic coatings for aircraft icing mitigation: A critical review, Prog. Adhes. Adhes., 6 (2021) 171-201.  https://doi.org/10.1002/9781119846703.ch7
  49. T.B. Nguyen, S. Park, Y. Jung, H. Lim, Effects of hydrophobicity and lubricant characteristics on anti-icing performance of slippery lubricant-infused porous surfaces, J. Ind .Eng. Chem., 69 (2019) 99-105.  https://doi.org/10.1016/j.jiec.2018.09.003
  50. Y.H. Yeong, C. Wang, K.J. Wynne, M.C. Gupta, Oil-infused superhydrophobic silicone material for low ice adhesion with long-term infusion stability, ACS Appl. Mater. Interfaces., 8 (2016) 32050-32059.  https://doi.org/10.1021/acsami.6b11184
  51. P. Juuti, J. Haapanen, C. Stenroos, H. Niemela Anttonen, J. Harra, H. Koivuluoto, H. Teisala, J. Lahti, M. Tuominen, J. Kuusipalo, P. Vuoristo, J. M. Makela, Achieving a slippery, liquid-infused porous surface with antiicing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate, Appl. Phys. Lett., 110 (2017) 161603. 
  52. P. Kim, T.S. Wong, J. Alvarenga, M.J. Kreder, W.E. Adorno Martinez, J. Aizenberg, Liquidinfused nanostructured surfaces with extreme anti-ice and anti-frost performance, ACS Nano, 6 (2012) 6569-6577.  https://doi.org/10.1021/nn302310q
  53. C. Liu, Y. Li, C. Lu, Y. Liu, S. Feng, Y. Liu, Robust slippery liquid-infused porous network surfaces for enhanced anti-icing/deicing performance, ACS Appl. Mater. Interfaces., 12 (2020) 25471-25477.  https://doi.org/10.1021/acsami.0c05954
  54. L. Ma, Z. Zhang, Y. Liu, H. Hu, An Experimental study on the drability of icephobic slippery liquid-infused porous surfaces (SLIPS) pertinent to aircraft anti-/ de-Icing, 2018 Atmospheric and Space Environments Conference, (2018) 3654 
  55. U. Manna, N. Raman, M.A. Welsh, Y.M. Zayas Gonzalez, H.E. Blackwell, S.P. Palecek, D.M. Lynn, Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: a controlled release approach, Adv. Funct. Mater., 26 (2016) 3599-3611.  https://doi.org/10.1002/adfm.201505522
  56. A.K. Epstein, T.S. Wong, R.A. Belisle, E.M. Boggs, J. Aizenberg, Liquid-infused structured surfaces with exceptional anti-biofouling performance, Proc. Natl. Acad. Sci. USA., 109.33 (2012) 13182-13187.  https://doi.org/10.1073/pnas.1201973109
  57. P. Wang, D. Zhang, Z. Lu, Slippery liquidinfused porous surface bio-inspired by pitcher plant for marine anti-biofouling application, Colloids Surf. B Biointerfaces, 136 (2015) 240-247.  https://doi.org/10.1016/j.colsurfb.2015.09.019
  58. T.S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B D. Hatton, A. Grinthal, J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressurestable omniphobicity, Nature, 477 (2011) 443-447.  https://doi.org/10.1038/nature10447
  59. C. Yu, M. Liu, C. Zhang, H. Yan, M. Zhang, Q. Wu, M. Liu, L. Jiang, Bio-inspired drag reduction: from nature organisms to artificial functional surfaces, Giant, 2 (2020) 100017 
  60. C. Vega Sanchez, S. Peppou Chapman, L. Zhu, C. Neto, Nanobubbles explain the large slip observed on lubricant-infused surfaces, Nat. Commun., 13 (2022) 351. 
  61. B.J. Rosenberg, T. Van Buren, M.K. Fu, A.J. Smits, Turbulent drag reduction over air-and liquid-impregnated surfaces, Phys. Fluids., 28 (2016) 015103 
  62. B.R. Solomon, K.S. Khalil, K.K. Varanasi, Drag reduction using lubricant-impregnated surfaces in viscous laminar flow, Langmuir, 30 (2014) 10970-10976.  https://doi.org/10.1021/la5021143
  63. A. Rifai, N. Abu Dheir, M. Khaled, N. Al Aqeeli, B. Sami Yilbas, Characteristics of oil impregnated hydrophobic glass surfaces in relation to selfcleaning of environmental dust particles, Sol. Energy. Mater. Sol. Cells., 171 (2017) 8-15.  https://doi.org/10.1016/j.solmat.2017.06.017
  64. J. Zhang, L. Wu, B. Li, L. Li, S. Seeger, A. Wang, Evaporation-induced transition from nepenthes pitcher-inspired slippery surfaces to lotus leafinspired superoleophobic surfaces, Langmuir, 30 (2014) 14292-14299.  https://doi.org/10.1021/la503300k
  65. K. Midtdal, B.P. Jelle, Self-cleaning glazing products: A state-of-the-art review and future research pathways, Sol. Energy. Mater. Sol. Cells., 109 (2013) 126-141.  https://doi.org/10.1016/j.solmat.2012.09.034
  66. J. Zhang, A. Wang, S. Seeger, Nepenthes pitcher inspired anti-wetting silicone nanofilaments coatings: preparation, unique anti-wetting and self-cleaning behaviors, Adv. Funct. Mater., 24 (2014) 1074-1080.  https://doi.org/10.1002/adfm.201301481
  67. H. Fan, Z. Guo, WO3-based slippery coatings with long-term stability for efficient fog harvesting, J. Colloid. Interface. Sci., 591 (2021) 418-428.  https://doi.org/10.1016/j.jcis.2021.01.076
  68. P. Lyu, X. Zhang, M. Peng, B. Shang, X. Liu, Multibioinspired wettable patterned slippery surface for efficient water harvesting, Adv. Mater. Interfaces., 8 (2021) 2100691 
  69. M. Kang, J. Lee, S. Cha, Y. Shin, D. Kim, K. Kim, J. Lee, Enhancement of condensation heat transfer of anodized aluminum by Teflon coating and oil-impregnation J. Korean Inst. Surf. Eng, 54 (2021) 90-95. 
  70. R. Gulfam, T. Huang, C. Lv, D. Orejon, P. Zhang, Condensation heat transfer on phase change slippery liquid-infused porous surfaces, Int. J. Heat. Mass. Transf., 185 (2022) 122384.