DOI QR코드

DOI QR Code

SIMPLE ZEROS OF L-FUNCTIONS AND THE WEYL-TYPE SUBCONVEXITY

  • Peter Jaehyun Cho (Department of Mathematical Sciences Ulsan National Institute of Science and Technology) ;
  • Gyeongwon Oh (Department of Mathematical Sciences Ulsan National Institute of Science and Technology)
  • Received : 2022.05.18
  • Accepted : 2022.09.26
  • Published : 2023.01.01

Abstract

Let f be a self-dual primitive Maass or modular forms for level 4. For such a form f, we define Nsf(T):=|{ρ ∈ ℂ : |𝕵(ρ)| ≤ T, ρ is a non-trivial simple zero of Lf(s)}|.. We establish an omega result for Nsf(T), which is $N^s_f(T) = \Omega(T^{\frac{1}{6}-{\epsilon}})$ for any ∊ > 0. For this purpose, we need to establish the Weyl-type subconvexity for L-functions attached to primitive Maass forms by following a recent work of Aggarwal, Holowinsky, Lin, and Qi.

Keywords

Acknowledgement

We thank the anonymous referee who carefully read our poorly written manuscript and gave many valuable comments.

References

  1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, DC, 1964.
  2. K. Aggarwal, Weyl bound for GL(2) in t-aspect via a simple delta method, J. Number Theory 208 (2020), 72-100. https://doi.org/10.1016/j.jnt.2019.07.018
  3. K. Aggarwal, R. Holowinsky, Y. Lin, and Z. Qi, A Bessel delta method and exponential sums for GL(2), Q. J. Math. 71 (2020), no. 3, 1143-1168. https://doi.org/10.1093/qmathj/haaa026
  4. A. O. L. Atkin and J. Lehner, Hecke operators on Γ0(m), Math. Ann. 185 (1970), 134-160. https://doi.org/10.1007/BF01359701
  5. A. O. L. Atkin and W. C. W. Li, Twists of newforms and pseudo-eigenvalues of W-operators, Invent. Math. 48 (1978), no. 3, 221-243. https://doi.org/10.1007/BF01390245
  6. A. R. Booker, Poles of Artin L-functions and the strong Artin conjecture, Ann. of Math. (2) 158 (2003), no. 3, 1089-1098. https://doi.org/10.4007/annals.2003.158.1089
  7. A. R. Booker, Simple zeros of degree 2 L-functions, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 4, 813-823. https://doi.org/10.4171/JEMS/603
  8. A. R. Booker, P. J. Cho, and M. Kim, Simple zeros of automorphic L-functions, Compos. Math. 155 (2019), no. 6, 1224-1243. https://doi.org/10.1112/s0010437x19007279
  9. H. M. Bui, B. Conrey, and M. P. Young, More than 41% of the zeros of the zeta function are on the critical line, Acta Arith. 150 (2011), no. 1, 35-64. https://doi.org/10.4064/aa150-1-3
  10. K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. (2) 76 (1962), 93-136. https://doi.org/10.2307/1970267
  11. P. J. Cho, Simple zeros of Maass L-functions, Int. J. Number Theory 9 (2013), no. 1, 167-178. https://doi.org/10.1142/S179304211250131
  12. J. B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. Reine Angew. Math. 399 (1989), 1-26. https://doi.org/10.1515/crll.1989.399.1
  13. J. B. Conrey and A. Ghosh, Simple zeros of the Ramanujan τ-Dirichlet series, Invent. Math. 94 (1988), no. 2, 403-419. https://doi.org/10.1007/BF01394330
  14. A. de Faveri, Simple zeros of GL(2) L-functions, preprint, https://arxiv.org/abs/2109.15311
  15. Y. Fan and Q. Sun, A Bessel δ-method and hybrid bounds for GL2, Q. J. Math. 73 (2022), no. 2, 617-656. https://doi.org/10.1093/qmath/haab046
  16. S. Feng, Zeros of the Riemann zeta function on the critical line, J. Number Theory 132 (2012), no. 4, 511-542. https://doi.org/10.1016/j.jnt.2011.10.002
  17. J. B. Friedlander and H. Iwaniec, Summation formulae for coefficients of L-functions, Canad. J. Math. 57 (2005), no. 3, 494-505. https://doi.org/10.4153/CJM-2005-021-5
  18. J. L. Hafner, Zeros on the critical line for Dirichlet series attached to certain cusp forms, Math. Ann. 264 (1983), no. 1, 21-37. https://doi.org/10.1007/BF01458048
  19. J. L. Hafner, Zeros on the critical line for Maass wave form L-functions, J. Reine Angew. Math. 377 (1987), 127-158. https://doi.org/10.1515/crll.1987.377.127
  20. H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, 17, American Mathematical Society, Providence, RI, 1997. https://doi.org/10.1090/gsm/017
  21. H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004. https://doi.org/10.1090/coll/053
  22. H. H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc. 16 (2003), no. 1, 139-183. https://doi.org/10.1090/S0894-0347-02-00410-1
  23. E. Kowalski, P. Michel, and J. VanderKam, Rankin-Selberg L-functions in the level aspect, Duke Math. J. 114 (2002), no. 1, 123-191. https://doi.org/10.1215/S0012-7094-02-11416-1
  24. A. Selberg, On the zeros of the zeta-function of Riemann, Norske Vid. Selsk. Forh., Trondhjem 15 (1942), no. 16, 59-62.
  25. A. Strombergsson, On the zeros of L-functions associated to Maass waveforms, Internat. Math. Res. Notices 1999 (1999), no. 15, 839-851.