Acknowledgement
This work was financially supported by the National Natural Science Foundation of China(Grant No. 11561062).
References
- M. Cao and Q. Xue, Characterization of two-weighted inequalities for multilinear fractional maximal operator, Nonlinear Anal. 130 (2016), 214-228. https://doi.org/10.1016/j.na.2015.10.004
- M. Cao, Q. Xue, and K. Yabuta, On multilinear fractional strong maximal operator associated with rectangles and multiple weights, Rev. Mat. Iberoam. 33 (2017), no. 2, 555-572. https://doi.org/10.4171/RMI/949
- W. Chen and W. Damian, Weighted estimates for the multisublinear maximal function, Rend. Circ. Mat. Palermo (2) 62 (2013), no. 3, 379-391. https://doi.org/10.1007/s12215-013-0131-9
- X. Chen and Q. Xue, Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl. 362 (2010), no. 2, 355-373. https://doi.org/10.1016/j.jmaa.2009.08.022
- L. Grafakos, Classical Fourier analysis, second edition, Graduate Texts in Mathematics, 249, Springer, New York, 2008.
- Y. P. Hu and Y. H. Cao, Two weight characterization of new maximal operators, Pure Appl. Math. J. 8 (2019), no. 3, 47-53. https://doi.org/10.11648/j.pamj.20190803.11
- M. T. Lacey and K. Li, Two weight norm inequalities for the g function, Math. Res. Lett. 21 (2014), no. 3, 521-536. https://doi.org/10.4310/MRL.2014.v21.n3.a9
- A. K. Lerner, S. Ombrosi, C. Perez, R. H. Torres, and R. Trujillo-Gonzalez, New maximal functions and multiple weights for the multilinear Calder'on-Zygmund theory, Adv. Math. 220 (2009), no. 4, 1222-1264. https://doi.org/10.1016/j.aim.2008.10.014
- K. Li and W. Sun, Characterization of a two weight inequality for multilinear fractional maximal operators, Houston J. Math. 42 (2016), no. 3, 977-990.
- K. Moen, Weighted inequalities for multilinear fractional integral operators, Collect. Math. 60 (2009), no. 2, 213-238. https://doi.org/10.1007/BF03191210
- B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. https://doi.org/10.2307/1995882
- B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274. https://doi.org/10.2307/1996833
- G. Pan and L. Tang, New weighted norm inequalities for certain classes of multilinear operators and their iterated commutators, Potential Anal. 43 (2015), no. 3, 371-398. https://doi.org/10.1007/s11118-015-9477-2
- Y. Pan and Q. Xue, Two weight characterizations for the multilinear local maximal operators, Acta Math. Sci. Ser. B (Engl. Ed.) 41 (2021), no. 2, 596-608. https://doi.org/10.1007/s10473-021-0219-9
- C. Perez and E. Rela, A new quantitative two weight theorem for the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc. 143 (2015), no. 2, 641-655. https://doi.org/10.1090/S0002-9939-2014-12353-7
- E. T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1-11. https://doi.org/10.4064/sm-75-1-1-11
- L. Tang, Weighted norm inequalities for pseudo-differential operators with smooth symbols and their commutators, J. Funct. Anal. 262 (2012), no. 4, 1603-1629. https://doi.org/10.1016/j.jfa.2011.11.016