DOI QR코드

DOI QR Code

Analysis of electrical resistivity characteristics according to the mixing ratio of coarse fillings in artificial rock joint

인공 암반절리의 조립토 충진물 혼합비에 따른 전기비저항 특성 분석

  • Haeju Do (Dept. of Civil and Environmental Engineering, Pusan National University) ;
  • Tae-Min Oh (Dept. of Civil and Environmental Engineering, Pusan National University) ;
  • Hangbok Lee (Deep subsurface Storage and Disposal Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 도해주 (부산대학교 사회환경시스템공학과) ;
  • 오태민 (부산대학교 사회환경시스템공학과) ;
  • 이항복 (한국지질자원연구원 국토우주지질연구본부 심층처분환경연구센터)
  • Received : 2023.03.06
  • Accepted : 2023.03.18
  • Published : 2023.03.31

Abstract

Monitoring technology based on electrical resistivity is widely used for non-destructive data collection and health analysis of underground structures and tunnels. Vulnerable sections such as fault zone generates many problems during construction of the tunnel. These problems cause displacement and stress changes of the ground. Therefore, it is necessary to predict the state of the fault zone section to ensure the mechanical stability of the underground structure. Monitoring the size of joints and the porosity of the fillings is essential for rocks. Previous studies have not considered the variety of fillings in rock joints. In this study, electrical resistivity tests were conducted according to the particle mixing state of the sandy fillings. When the size of fillings is decreased at the constant porosity, the electrical resistivity tends to increase. The results of this study are expected to be useful as basic electrical resistivity data for predicting the ground conditions and evaluation of the ground behavior that is containing sandy fillings in the rock joint for tunnels.

전기비저항을 이용한 모니터링 기술은 비파괴적으로 데이터 수집이 가능하여, 터널 및 지하구조물의 건전도 평가를 목적으로 활발히 활용되고 있다. 터널 시공에서 단층파쇄대와 같은 취약 구간은 지반의 변위 발생 및 응력 변화 등의 문제를 일으킨다. 따라서 터널 구조물의 역학적 안정성 확보를 위해 단층파쇄대 구간의 절리 상태 예측이 필요하다. 절리의 크기 및 충진물의 공극률 모니터링은 암반의 절리 상태 예측을 위해 필수적이다. 하지만 기존 연구에서는 자연상태의 암반절리 내 입자 크기의 다양성을 고려하지 못한 한계가 있다. 따라서 본 연구에서는 암반절리 상태 충진물의 조립토 입자혼합상태에 따른 전기비저항 실험을 수행하였다. 실험 결과, 동일한 공극률 조건에서 충진물의 크기가 작을수록 전기비저항 값이 증가하는 경향성을 확인하였다. 본 연구결과는 터널 구간 내 암반절리 내 조립토 충진물을 포함하고 있는 지반의 전방 예측 및 거동 평가를 위한 전기비저항 기초자료로 유용하게 활용될 것으로 기대된다.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Abrudan, T.E., Kypris, O., Trigoni, N., Markham, A. (2016), "Impact of rocks and minerals on underground magneto-inductive communication and localization", IEEE Access, Vol. 4, pp. 3999-4010. https://doi.org/10.1109/ACCESS.2016.2597641
  2. Archie, G.E. (1942), "The electrical resistivity log as an aid in determining some reservoir characteristics", Transactions of the AIME, Vol. 146, No. 1, pp. 54-62. https://doi.org/10.2118/942054-G
  3. Charles, A.C., Gawu Simon, K.Y., Samuel, A.K. (2018), "Experimental study of electrical resistivity to rock fracture intensity and aperture size", International Journal of Physics, Vol. 6, No. 3, pp. 85-92.
  4. Demirel, S., Roubinet, D., Irving, J., Voytek, E. (2018), "Characterizing near-surface fractured-rock aquifers: insights provided by the numerical analysis of electrical resistivity experiments", Water, Vol. 10, No. 9, 1117.
  5. Lee, H., Lee, J.W., Oh, T.M. (2021), "Permeability evaluation for artificial single rock fracture according to geometric aperture variation using electrical resistivity", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 13, No. 4, pp. 787-797. https://doi.org/10.1016/j.jrmge.2021.04.003
  6. Lee, S.K., Lee, T.J. (2009), "Electrical resistivity of cylindrical cement core with successive substitution by electrolyte of different conductivity", Geophysics and Geophysical Exploration, Vol. 12, No. 4, pp. 328-337.
  7. Lofgren, M., Neretnieks, I. (2003), "Formation factor logging by electrical methods: comparison of formation factor logs obtained in situ and in the laboratory", Journal of Contaminant Hydrology, Vol. 61, No. 1-4, pp. 107-115. https://doi.org/10.1016/S0169-7722(02)00117-1
  8. Nakatsuka, Y., Xue, Z., Garcia, H., Matsuoka, T. (2010), "Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements", International Journal of Greenhouse Gas Control, Vol. 4, No. 2, pp. 209-216. https://doi.org/10.1016/j.ijggc.2010.01.001
  9. Oh, T.M., Cho, G.C., Lee, C. (2014), "Effect of soil mineralogy and pore-water chemistry on the electrical resistivity of saturated soils", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, No. 11, 06014012.
  10. Oh, T.M., Cho, G.C., Son, T.A., Rye, H.H., Lee, C.H. (2015), "Experimental approach to evaluate weathering condition of granite using electrical resistivity", Geomechanics and Engineering, Vol. 8, No. 5, pp. 675-685. https://doi.org/10.12989/gae.2015.8.5.675
  11. Shin, H.C., Shin, M.H., Cho, K.H. (2013), "Analysis on the relationship of joint directions of fracture zone and collapse type in the railway tunnel", Proceedings of the 2013 Spring Conference of the Korean Society for Railway, Pyeongchang, pp. 999-1004.
  12. Woo, J.T. (2003), "A study on the mechanical characteristics of tunnel structures and ground behavior by synthetic analysis method with tunnel monitoring results used", Journal of The Korea Institute for Structural Maintenance and Inspection, Vol. 7, No. 3, pp. 115-124.
  13. Woo, J.T., Lee, K.I. (2012), "A study on establishment of measurement and analysis frequency of maintenance monitoring in tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 2, pp. 117-129.  https://doi.org/10.9711/KTAJ.2012.14.2.117