DOI QR코드

DOI QR Code

Microstructure analysis of pressure resistance seal welding joint of zirconium alloy tube-plug structure

  • Gang Feng (Faculty of Materials and Manufacturing, Beijing University of Technology) ;
  • Jian Lin (Faculty of Materials and Manufacturing, Beijing University of Technology) ;
  • Shuai Yang (Tianjin Long March Launch Vehicle Manufacturing Co., Ltd) ;
  • Boxuan Zhang (Tianjin Long March Launch Vehicle Manufacturing Co., Ltd) ;
  • Jiangang Wang (Tianjin Long March Launch Vehicle Manufacturing Co., Ltd) ;
  • Jia Yang (Suzhou Nuclear Power Research Institute) ;
  • Zhongfeng Xu (Suzhou Nuclear Power Research Institute) ;
  • Yongping Lei (Faculty of Materials and Manufacturing, Beijing University of Technology)
  • Received : 2022.12.24
  • Accepted : 2023.07.19
  • Published : 2023.11.25

Abstract

Pressure resistance welding is usually used to seal the connection between the cladding tube and the end plug made of zirconium alloy. The seal welded joint has a direct effect on the service performance of the fuel rod cladding structure. In this paper, the pressure resistance welded joints of zirconium alloy tube-plug structure were obtained by thermal-mechanical simulation experiments. The microstructure and microhardness of the joints were both analyzed. The effect of processing parameters on the microstructure was studied in detail. The results showed that there was no β-Zr phase observed in the joint, and no obvious element segregation. There were different types of Widmanstätten structure in the thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ) of the cladding tube and the end plug joint because of the low cooling rate. Some part of the grains in the joint grew up due to overheating. Its size was about 2.8 times that of the base metal grains. Due to the high dislocation density and texture evolution, the microhardnesses of TMAZ and HAZ were both significantly higher than that of the base metal, and the microhardness of the TMAZ was the highest. With the increasing of welding temperature, the proportion of recrystallization in TMAZ decreased, which was caused by the increasing of strain rate and dislocation annihilation.

Keywords

Acknowledgement

Thanks for the help of Department of Mechanical Engineering, Tsinghua University, in experimental equipment support. This work was supported by the Beijing Natural Science Foundation (L212022) and National Natural Science Foundation of China (51005004).

References

  1. M. Slobodyan, Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: a review, Nucl. Eng. Technol. 53 (2021) 1049-1078, https://doi.org/10.1016/j.net.2020.10.005.
  2. J. Gan, N. Jerred, E. Perez, D.C. Haggard, Laser and pressure resistance weld of thin-wall cladding for LWR accident-tolerant fuels, J. Occup. Med. 70 (2) (2018) 192-197, https://doi.org/10.1007/s11837-017-2697-8.
  3. K.W. Song, K.L. Jeon, Y.K. Jang, J.H. Park, Y.H. Koo, Progress in nuclear fuel technology in Korea, Nucl. Eng. Technol. 41 (2009) 493-520, https://doi.org/10.5516/NET.2009.41.4.493.
  4. N. Boutare, B. Azzougui, D. Saidi, M. Neggache, Microstructure change in the interface of Co2 laser welded zirconium alloys, Phys. Procedia 2 (3) (2009) 1159-1165, https://doi.org/10.1016/j.phpro.2009.11.078.
  5. S.S. Kim, J.H. Koh, J.W. Lee, G. Park, Application of welding technology for a zirconium alloy of nuclear fuel cladding, J. Weld. Join. 29 (1) (2011) 5-8, https://doi.org/10.5781/KWJS.2011.29.1.005.
  6. O. Doyen, B.L. Gloannec, A. Deschamps, F.D. Geuser, C. Pouvreau, A. Poulon-Quintin, Ferritic and martensitic ODS steel resistance upset welding of fuel claddings: weldability assessment and metallurgical effects, J. Nucl. Mater. 518 (2019) 326-333, https://doi.org/10.1016/j.jnucmat.2019.03.013.
  7. N.D. Jerred, I. Charit, L.R. Zirker, J.I. Cole, Pressure resistance welding of MA-957 to HT-9 for advanced reactor applications, J. Nucl. Mater. 508 (2018) 265-277, https://doi.org/10.1016/j.jnucmat.2018.05.046.
  8. Z.W. Lin, F.Q. Chen, G.W. Liang, Numerical simulation of residual stress and deformation of special resistance welding of nuclear power zirconium tube, Adv. Mater. Res. 154-155 (2011) 304-309. https://doi.org/10.4028/www.scientific.net/AMR.154-155.304.
  9. R.A. Bordoni, A.M. Olmedo, Microstructure in the weld region in seam welded and resistance welded Zircaloy 4 tubing, J. Mater. Sci. 16 (16) (1981) 1527-1532, https://doi.org/10.1007/bf02396870.
  10. G.P. Sakamiti, R.H.M.D. Siqueira, S.M.D. Carvalho, J.B. Meireles, M.S.F. Lima, Weldability of a zirconium alloy comparing resistance and pulsed laser methods, Nucl. Mater. Energy. 20 (2019), 100693, https://doi.org/10.1016/j.nme.2019.100693.
  11. T.H. Na, S.J. Na, Y.W. Park, A study on characteristics of end plug resistance welding process in nuclear fuel rods by experiment and numerical simulation, Int. J. Adv. Manuf. Technol. 98 (2018) 2241-2255, https://doi.org/10.1007/s00170-018-2365-3.
  12. J.Y. Park, T.H. Na, T.H. Lee, B.Y. Lee, J.S. Kim, Effect of applied current on the formation of defect in PWR nuclear fuel rods in resistance pressure welding process, J. Nucl. Sci. Technol. 52 (5) (2015) 748-757, https://doi.org/10.1080/00223131.2014.971900.
  13. Y.B. Ammar, A. Aoufi, M. Darrieulat, Influence of the cooling rate on the texture and the microstructure of Zircaloy-4 studied by means of a Jominy end-quench test, Mater. Sci. Eng. A. 556 (2012) 184-193, https://doi.org/10.1016/j.msea.2012.06.077.
  14. Q.S. Dong, H.B. Yu, Z.W. Yao, F. Long, L. Balogh, M.R. Daymond, Study of microstructure and precipitates of a Zr-2.5Nb-0.5Cu CANDU spacer material, J. Nucl. Mater. 481 (2016) 153-163, https://doi.org/10.1016/j.jnucmat.2016.09.017.
  15. J. Romero, M. Preuss, J. Fonseca, Capturing the texture changes in a zirconium alloy during the allotropic phase transformation, Scr. Mater. 61 (4) (2009) l399-l402, https://doi.org/10.1016/j.scriptamat.2009.04.031.
  16. G. Feng, J. Lin, J. Yang, Z.X. Liang, L. Lu, Y.P. Lei, H.G. Fu, Numerical modeling of pressure resistance welding of zirconium alloy tube-end plug joint, Int. J. Adv. Manuf. Technol. 121 (2022) 3337-3350, https://doi.org/10.1007/s00170-022-09513-5.
  17. B.F. Luan, J.J. Xue, L.J. Chai, J. Zhou, Effect of cooling rates and impurities on the microstructure of β→α transformation in Zr alloys, Rare. Metal. Mater.Eng. 42 (12) (2013) 2636-2640, 1002-185X(2013)12-2636-05.
  18. J.W. Lee, K.T. Son, T.K. Jung, Y.O. Yoon, S.K. Kim, H.J. Choi, S.K. Hyun, Continuous dynamic recrystallization behavior and kinetics of Al-Mg-Si alloy modified with CaO-added Mg, Mater. Sci. Eng. A. 673 (2016) 648-659, https://doi.org/10.1016/j.msea.2016.07.100.
  19. A.A. El-Aty, Y. Xu, S. Ha, S.H. Zhang, Computational homogenization of tensile deformation behaviors of a third generation Al-Li alloy 2060-T8 using crystal plasticity fifinite element method, Mater. Sci. Eng. A. 731 (25) (2018) 583-594, https://doi.org/10.1016/j.msea.2018.06.088.
  20. A. Saboori, M. Dadkhah, M. Pavese, D. Manfredi, S. Biamino, P. Fino, Hot deformation behavior of Zr-1%Nb alloy: flow curve analysis and microstructure observations, Mater. Sci. Eng. A. 696 (2017) 366-373, https://doi.org/10.1016/j.msea.2017.04.049.
  21. Y.H. Xiao, C. Guo, X.Y. Guo, Constitutive modeling of hot deformation behavior of H62 brass, Mater. Sci. Eng. A. 528 (21) (2011) 6510-6518, https://doi.org/10.1016/j.msea.2011.04.090.
  22. W. Wei, K.X. Wei, G.J. Fan, A new constitutive equation for strain hardening and softening of fcc metals during severe plastic deformation, Acta Mater. 56 (17) (2008) 4771-4779, https://doi.org/10.1016/j.actamat.2008.05.025.
  23. P.F. Yu, C.S. Wu, L. Shi, Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates, Acta Mater. 207 (2021), 116692, https://doi.org/10.1016/j.actamat.2021.116692.
  24. R.E. Loge, J.W. Signorelli, Y.B. Chastel, M.Y. Perrin, R.A. Lebensohn, Sensitivity of α-ZY4 high-temperature deformation textures to the β-quenched precipitate structure and to recrystallization: application to hot extrusion, Acta Mater. 48 (15) (2000) 3917-3930, https://doi.org/10.1016/S1359-6454(00)00179-8.