DOI QR코드

DOI QR Code

Labeling strategy to improve neutron/gamma discrimination with organic scintillator

  • Received : 2022.10.25
  • Accepted : 2023.07.19
  • Published : 2023.11.25

Abstract

Organic scintillators are widely used for neutron/gamma detection. Pulse shape discrimination algorithms have been commonly used to discriminate the detected radiations. These algorithms have several limits, in particular with plastic scintillator which has lower discrimination ability, compared to liquid scintillator. Recently, machine learning (ML) models have been explored to enhance discrimination performance. Nevertheless, obtaining an accurate ML model or evaluating any discrimination approach requires a reference neutron dataset. The preparation of this is challenging because neutron sources are also gamma-ray emitters. Therefore, this paper proposes a pipeline to prepare clean labeled neutron/gamma datasets acquired by an organic scintillator. The method is mainly based on a Time of Flight setup and Tail-to-Total integral ratio (TTTratio) discrimination algorithm. In the presented case, EJ276 plastic scintillator and 252Cf source were used to implement the acquisition chain. The results showed that this process can identify and remove mislabeled samples in the entire ToF spectrum, including those that contribute to peak values. Furthermore, the process cleans ToF dataset from pile-up events, which can significantly impact experimental results and the conclusions extracted from them.

Keywords

References

  1. B. D'Mellow, M. Aspinall, R. Mackin, M.J. Joyce, A. Peyton, Digital discrimination of neutrons and 𝛾-rays in liquid scintillators using pulse gradient analysis, Nucl. Instrum. Methods Phys. Res. A 578 (1) (2007) 191-197. 
  2. J. Adams, G. White, A versatile pulse shape discriminator for charged particle separation and its application to fast neutron time-of-flight spectroscopy, Nucl. Instrum. Methods 156 (3) (1978) 459-476. 
  3. S. Marrone, D. Cano-Ott, N. Colonna, C. Domingo, F. Gramegna, E. Gonzalez, F. Gunsing, M. Heil, F. Kappeler, P. Mastinu, et al., Pulse shape analysis of liquid scintillators for neutron studies, Nucl. Instrum. Methods Phys. Res. A 490 (1-2) (2002) 299-307. 
  4. F. Brooks, Development of organic scintillators, Nucl. Instrum. Methods 162 (1-3) (1979) 477-505. 
  5. T. Laplace, B. Goldblum, J. Bevins, D. Bleuel, E. Bourret, J. Brown, E. Callaghan, J. Carlson, P. Feng, G. Gabella, et al., Comparative scintillation performance of EJ-309, EJ-276, and a novel organic glass, J. Instrum. 15 (11) (2020) P11020. 
  6. M. Grodzicka-Kobylka, T. Szczesniak, M. Moszynski, K. Brylew, L. Swiderski, J. Valiente-Dobon, P. Schotanus, K. Grodzicki, H. Trzaskowska, Fast neutron and gamma ray pulse shape discrimination in EJ-276 and EJ-276G plastic scintillators, J. Instrum. 15 (03) (2020) P03030. 
  7. F. Ferrulli, N. Dinar, L.G. Manzano, M. Labalme, M. Silari, Characterization of stilbene and EJ-276 scintillators coupled with a large area SiPM array for a fast neutron dose rate detector, Nucl. Instrum. Methods Phys. Res. A 1010 (2021) 165566. 
  8. M. Grodzicka-Kobylka, T. Szczesniak, M. Moszynski, K. Brylew, L. Swiderski, J. Valiente-Dobon, P. Schotanus, K. Grodzicki, H. Trzaskowska, Fast neutron and gamma ray pulse shape discrimination in EJ-276 and EJ-276G plastic scintillators, J. Instrum. 15 (03) (2020) P03030. 
  9. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010. 
  10. E. TECHNOLOGY, PSD Plastic scintilator EJ-276 and EJ-276g, 2022, URL https://eljentechnology.com/images/products/data_sheets/EJ-276.pdf. 
  11. H. Arahmane, E.-M. Hamzaoui, R. Moursli, Improving neutron-Gamma discrimination with stilbene organic scintillation detector using blind nonnegative matrix and tensor factorization methods, J. Spectrosc. 2019 (2019) 1-9, http://dx.doi.org/10.1155/2019/8360395. 
  12. L.M. Simms, B. Blair, J. Ruz, R. Wurtz, A.D. Kaplan, A. Glenn, Pulse discrimination with a Gaussian mixture model on an FPGA, Nucl. Instrum. Methods Phys. Res. A 900 (2018) 1-7. 
  13. C. Fu, A. Di Fulvio, S. Clarke, D. Wentzloff, S. Pozzi, H. Kim, Artificial neural network algorithms for pulse shape discrimination and recovery of piled-up pulses in organic scintillators, Ann. Nucl. Energy 120 (2018) 410-421. 
  14. X. Yu, J. Zhu, S. Lin, L. Wang, H. Xing, C. Zhang, Y. Xia, S. Liu, Q. Yue, W. Wei, Q. Du, C. Tang, Neutron-gamma discrimination based on the support vector machine method, Nucl. Instrum. Methods Phys. Res. A 777 (2015) 80-84, http://dx.doi.org/10.1016/j.nima.2014.12.087, URL https://www.sciencedirect.com/science/article/pii/S0168900214015551. 
  15. W. Zhang, W. Tongyu, B. Zheng, L. Shiping, Y. Zhang, Y. Zejie, A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-flight neutron spectrometer, Plasma Sci. Technol. 20 (4) (2018) 045601. 
  16. S. Pozzi, M. Bourne, S. Clarke, Pulse shape discrimination in the plastic scintillator EJ-299-33, Nucl. Instrum. Methods Phys. Res. A 723 (2013) 19-23. 
  17. D. Fobar, L. Phillips, A. Wilhelm, P. Chapman, Considerations for training an artificial neural network for particle type identification, IEEE Trans. Nucl. Sci. 68 (9) (2021) 2350-2357. 
  18. M. Aspinall, B. D'Mellow, R. Mackin, M. Joyce, N. Hawkes, D. Thomas, Z. Jarrah, A. Peyton, P. Nolan, A. Boston, Verification of the digital discrimination of neutrons and γ rays using pulse gradient analysis by digital measurement of time of flight, Nucl. Instrum. Methods Phys. Res. A 583 (2-3) (2007) 432-438. 
  19. K.P. Lennox, P. Rosenfield, B. Blair, A. Kaplan, J. Ruz, A. Glenn, R. Wurtz, Assessing and minimizing contamination in time of flight basedvalidation data, Nucl. Instrum. Methods Phys. Res. A 870 (2017) 30-36. 
  20. A.D. Kaplan, B. Blair, C. Chen, A. Glenn, J. Ruz, R. Wurtz, A neutron-gamma pulse shape discrimination method based on pure and mixed sources, Nucl. Instrum. Methods Phys. Res. A 919 (2019) 36-41. 
  21. G. Liu, M. Aspinall, X. Ma, M. Joyce, An investigation of the digital discrimination of neutrons and γ rays with organic scintillation detectors using an artificial neural network, Nucl. Instrum. Methods Phys. Res. A 607 (3) (2009) 620-628. 
  22. V.T. Jordanov, Deconvolution of pulses from a detector-amplifier configuration, Nucl. Instrum. Methods Phys. Res. A 351 (2-3) (1994) 592-594. 
  23. S. Marrone, D. Cano-Ott, N. Colonna, C. Domingo, F. Gramegna, E. Gonzalez, F. Gunsing, M. Heil, F. Kappeler, P. Mastinu, et al., Pulse shape analysis of liquid scintillators for neutron studies, Nucl. Instrum. Methods Phys. Res. A 490 (1-2) (2002) 299-307. 
  24. F. Belli, B. Esposito, D. Marocco, M. Riva, Y. Kaschuck, G. Bonheure, et al., A method for digital processing of pile-up events in organic scintillators, Nucl. Instrum. Methods Phys. Res. A 595 (2) (2008) 512-519. 
  25. W. Guo, R.P. Gardner, C.W. Mayo, A study of the real-time deconvolution of digitized waveforms with pulse pile up for digital radiation spectroscopy, Nucl. Instrum. Methods Phys. Res. A 544 (3) (2005) 668-678. 
  26. X. Luo, V. Modamio, J. Nyberg, J. Valiente-Dobon, Q. Nishada, G. De Angelis, J. Agramunt, F. Egea, M. Erduran, S. Erturk, et al., Pulse pile-up identification and reconstruction for liquid scintillator based neutron detectors, Nucl. Instrum. Methods Phys. Res. A 897 (2018) 59-65. 
  27. M. Nakhostin, Z. Podolyak, P. Regan, P. Walker, A digital method for separation and reconstruction of pile-up events in germanium detectors, Rev. Sci. Instrum. 81 (10) (2010) 103507. 
  28. S. Lee, B. Park, Y. Kim, H. Myung, Peak detection with pile-up rejection using multiple-template cross-correlation for MWD (measurement while drilling), in: Robot Intelligence Technology and Applications 3, Springer, 2015, pp. 753-758. 
  29. R.W. Engstrom, Photomultiplier Handbook, RCA Solid State Division. Electro Optics and Devices, 1980. 
  30. J.F. Dicello, W. Gross, U. Kraljevic, Radiation quality of Californium-252, Phys. Med. Biol. 17 (3) (1972) 345-355, http://dx.doi.org/10.1088/0031-9155/17/3/301. 
  31. J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, no. 14, Oakland, CA, USA, 1967, pp. 281-297. 
  32. C. Lynde, E. Montbarbon, M. Hamel, A. Grabowski, C. Frangville, G.H. Bertrand, G. Galli, F. Carrel, V. Schoepff, Z. El Bitar, Optimization of the charge comparison method for multiradiation field using various measurement systems, IEEE Trans. Nucl. Sci. 67 (4) (2020) 679-687. 
  33. A. Hachem, A. Kanj, Y. Moline, G. Corre, C. Lynde, F. Carrel, Neutron/Gamma discrimination performance with plastic scintillator according to SNR, vertical resolution and sampling frequency, in: 2022 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector (RTSD) Conference, 2022, forthcoming.