DOI QR코드

DOI QR Code

Study on Solution-Processed Flexible Electrochromic Devices with Improved Coloration Efficiency and Stability

  • Gihwan, Song (Institute of Materials Technology, School of Materials Science and Engineering, Yeungnam University) ;
  • Haekyoung, Kim (Institute of Materials Technology, School of Materials Science and Engineering, Yeungnam University)
  • Received : 2022.10.17
  • Accepted : 2022.10.31
  • Published : 2023.01.01

Abstract

According to the recent global warming, it is necessary to use energy efficiently together with eco-friendly energy. The development of alternative technologies is requisite for managing the current energy and climate crises. In this regard, "smart windows," which can control solar radiation, can be used to mitigate energy demands. Electrochromic devices (ECDs) effectively control the amount of solar energy reaching commercial and other living areas and maintain climate conditions via color modulation in response to small external stimuli, such as temperature and light irradiation. However, the performance and the stability of ECDs depend on the state of the electrolyte and sealing of the device. To resolve the aforementioned issues, an ECD was manufactured by using a poly (methyl methacrylate) (PMMA)-based gel polymer electrolyte (GPE), and a laminating method was used to adequately seal the ECD. The concentrations of PMMA, acetonitrile (ACN), and ferrocene (Fc) were controlled to optimize the composition of the GPE to achieve an enhanced electrochromic performance. The fabricated GPE-based ECD afforded high optical contrast (~81.92%), with high electrochromic stability up to 10,000 cycles. Moreover, the lamination method employing the GPE could be used to fabricate large-area ECDs.

Keywords

Acknowledgement

This work was supported by the Korea Innovation Foundation (INNOPOLIS) [2020-DD UP-0278] and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [NRF- 2022R1A2C1005585].

References

  1. P. V. Rathod, J. M. Puguan, and H. Kim, Chem. Eng. J., 422, 130065 (2021). [DOI: https://doi.org/10.1016/j.cej.2021.130065]
  2. S. Nundy, A. Mesloub, B. M. Alsolami, and A. Ghosh, J. Clean. Prod., 301, 126854 (2021). [DOI: https://doi.org/10.1016/j.jclepro.2021.126854]
  3. A. Abdollahi, H. R. Mamaqani, and B. Razavi, Prog. Polym. Sci., 98, 101149 (2019). [DOI: https://doi.org/10.1016/j.progpolymsci.2019.101149]
  4. C. Sella, M. Maaza, O. Nemraoui, J. Lafait, N. Renard, and Y. Sampeur, Surf. Coat. Technol., 98, 1477 (1998). [DOI: https://doi.org/10.1016/S0257-8972(97)00154-0]
  5. Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou, J. Yin, P. S. Lee, and Y. Long, Adv. Energy Mater., 9, 1902066 (2019). [DOI: https://doi.org/10.1002/aenm.201902066]
  6. S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, and H. Wu, Adv. Mater., 29, 1703238 (2017). [DOI: https://doi.org/10.1002/adma.201703238]
  7. L. M. Huang, C. W. Hu, H. C. Liu, C. Y. Hsu, C. H. Chen, and K. C. Ho, Sol. Energy Mater. Sol. Cells, 99, 154 (2012). [DOI: https://doi.org/10.1016/j.solmat.2011.03.036]
  8. P. Yang, P. Sun, and W. Mai, Mater. Today, 19, 394 (2016). [DOI: https://doi.org/10.1016/j.mattod.2015.11.007]
  9. A. Subrahmanyam, C. S. Kumar, and K. M. Karuppasamy, Sol. Energy Mater. Sol. Cells, 91, 62 (2007). [DOI: https://doi.org/10.1016/j.solmat.2006.07.003]
  10. Y. Ding, M. A. Invernale, D.M.D. Mamangun, A. Kumar, and G. A. Sotzing, J. Mater. Chem., 21, 11873 (2011). [DOI: https://doi.org/10.1039/C1JM11141H]
  11. W. Li, T. Bai, G. Fu, Q. Zhang, J. Liu, H. Wang, Y. Sun, and H. Yan, Sol. Energy Mater. Sol. Cells, 240, 111709 (2022). [DOI: https://doi.org/10.1016/j.solmat.2022.111709]
  12. Z. Jiao, X. W. Sun, J. Wang, L. Ke, and H. V. Demir, J. Phys. D: Ap p l. Phys., 43, 285501 (2010). [DOI: https://doi.org/10.1088/0022-3727/43/28/285501]
  13. V. K. Thakur, G. Ding, J. Ma, P. S. Lee, and X. Lu, Adv. Mater., 24, 4071 (2012). [DOI: https://doi.org/10.1002/adma.201200213]
  14. F. Baskoro, H. Q. Wong, and H. J. Yen, ACS Appl. Energy Mater., 2, 3937 (2019). [DOI: https://doi.org/10.1021/acsaem.9b00295]
  15. W. Li, Y. Pang, J. Liu, G. Liu, Y. Wang, and Y. Xia, RSC Adv., 7, 23494 (2017). [DOI: https://doi.org/10.1039/C7RA02603J]
  16. H. Gao, W. Zhou, K. Park, and J. B. Goodenough, Adv. Energy Mater., 6, 1600467 (2016). [DOI: https://doi.org/10.1002/aenm.201600467]
  17. R. Zhang, Y. Chen, and R. Montazami, Materials, 8, 2735 (2015). [DOI: https://doi.org/10.3390/ma8052735]
  18. F. Bella, A. Lamberti, S. Bianco, E. Tresso, C. Gerbaldi, and C. F. Pirri, Adv. Mater. Technol., 1, 1600002 (2016). [DOI: https://doi.org/10.1002/admt.201600002]
  19. S. Desai, R. L. Shepherd, P. C. Innis, P. Murphy, C. Hall, R. Fabretto, and G. G. Wallace, Electrochim. Acta, 56, 4408 (2011). [DOI: https://doi.org/10.1016/j.electacta.2010.10.030]
  20. F. Zhang, G. Dong, J. Liu, S. Ye, and X. Diao, Ionics, 23, 1879 (2017). [DOI: https://doi.org/10.1007/s11581-017-1996-y]
  21. J.M.C. Puguan, W. J. Chung, and H. Kim, Electrochim. Acta, 196, 236 (2016). [DOI: https://doi.org/10.1016/j.electacta.2016.02.172]
  22. J. Bae, H. Kim, H. C. Moon, and S. H. Kim, J. Mater. Chem. C, 4, 10887 (2016). [DOI: https://doi.org/10.1039/C6TC03463B]
  23. K. Ahmad, M. A. Shinde, G. Song, and H. Kim, Ceram. Int., 47, 34297 (2021). [DOI: https://doi.org/10.1016/j.ceramint.2021.08.340]
  24. J. Bae, D. G. Seo, S. M. Park, K. T. Park, H. Kim, H. C. Moon, and S. H. Kim, J. Phys. D: Appl. Phys., 50, 465105 (2017). [DOI: https://doi.org/10.1088/1361-6463/aa8e88]
  25. J. Y. Wang, M. C. Wang, and D. J. Jan, Sol. Energy Mater. Sol. Cells, 160, 476 (2017). [DOI: https://doi.org/10.1016/j.solmat.2016.11.009]
  26. D. Saikia, C. C. Han, and Y.W.C. Yang, J. Power Sources, 185, 570 (2008). [DOI: https://doi.org/10.1016/j.jpowsour.2008.06.063]
  27. S. N. Asmara, M. Z. Kufian, S. R. Majid, and A. K. Arof, Electrochim. Acta, 57, 91 (2011). [DOI: https://doi.org/10.1016/j.electacta.2011.06.045]
  28. S. Chandra, S. S. Sekhon, and N. Arora, Ionics, 6, 112 (2000). [DOI: https://doi.org/10.1007/BF02375554]
  29. D. Saikia, C. G. Wu, J. Fang, L. D. Tsai, and H. M. Kao, J. Power Sources, 269, 651 (2014). [DOI: https://doi.org/10.1016/j.jpowsour.2014.06.159]
  30. Q. Tang, H. Li, Y. Yue, Q. Zhang, H. Wang, Y. Li, and P. Chen, Mater. Des., 118, 279 (2017). [DOI: https://doi.org/10.1016/j.matdes.2017.01.033]
  31. T. Y. Yun, X. Li, J. Bae, S. H. Kim, and H. C. Moon, Mater. Des., 162, 45 (2019). [DOI: https://doi.org/10.1016/j.matdes.2018.11.016]
  32. G. Y. Karaca, E. Eren, G. C. Cogal, E. Uygun, L. Oksuz, and A. U. Oksuz, Opt. Mater., 88, 472 (2019). [DOI: https://doi.org/10.1016/j.optmat.2018.11.052]
  33. H. W. Choi, D. G. Seong, and J. S. Park, Org. Electron., 87, 105970 (2020). [DOI: https://doi.org/10.1016/j.orgel.2020.105970]
  34. Y. Wang, Z. Meng, H. Chen, T. Li, D. Zheng, Q. Xu, H. Wang, X. Y. Liu, and W. Guo, J. Mater. Chem. C, 7, 1966 (2019). [DOI: https://doi.org/10.1039/C8TC05698F]
  35. X. Liu, K. Li, C. Hou, H. Li, P. Chen, Q. Zhang, Y. Li, and H. Wang, Mater. Sci. Eng.: B, 241, 36 (2019). [DOI: https://doi.org/10.1016/j.mseb.2019.02.001]
  36. Y. Kim, C. Park, S. Im, and J. H. Kim, Sci. Rep., 10, 16488 (2020). [DOI: https://doi.org/10.1038/s41598-020-73259-x]
  37. E. Eren, C. Alver, G. Y. Karaca, E. Uygun, L. Oksuz, and A. U. Oksuz, Electroanal., 30, 2099 (2018). [DOI: https://doi.org/10.1002/elan.201800276]
  38. M. Wang, A. Barnabe, Y. Thimont, J. Wang, Y. He, Q. Liu, X. Zhong, G. Dong, J. Yang, and X. Diao, Electrochim. Acta, 301, 200 (2019). [DOI: https://doi.org/10.1016/j.electacta.2019.01.184]