DOI QR코드

DOI QR Code

LED 기반 콩[Glycine max (L.) Merr.] 세대단축 시스템 구축을 위한 조건 설정

Establishing Optimal Conditions for LED-Based Speed Breeding System in Soybean [Glycine max (L.) Merr.]

  • 박규태 (농촌진흥청 국립식량과학원 작물기초기반과 ) ;
  • 배지현 (농촌진흥청 국립식량과학원 작물기초기반과 ) ;
  • 이주석 (한국생명공학연구원 바이오평가센터) ;
  • 박수권 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 김둘이 (농촌진흥청 국립식량과학원 작물기초기반과 ) ;
  • 문중경 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 서미숙 (농촌진흥청 국립식량과학원 작물기초기반과 )
  • Gyu Tae Park (Crop Foundation Division, National Institute of Crop Science, Rural Development Administration) ;
  • Ji-Hyun Bae (Crop Foundation Division, National Institute of Crop Science, Rural Development Administration) ;
  • Ju Seok Lee (Korea Research Institute of Bioscience and Biotechnology Bio-evaluation Center) ;
  • Soo-Kwon Park (Crop Foundation Division, National Institute of Crop Science, Rural Development Administration) ;
  • Dool-Yi Kim (Crop Foundation Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jung-Kyung Moon (Crop Foundation Division, National Institute of Crop Science, Rural Development Administration) ;
  • Mi-Suk Seo (Crop Foundation Division, National Institute of Crop Science, Rural Development Administration)
  • 투고 : 2023.09.25
  • 심사 : 2023.11.10
  • 발행 : 2023.12.01

초록

본 연구에서는 LED 광원을 이용한 세대단축 시스템을 콩에 적용하기 위한 조건을 설정하고자 하였다. 생태형을 고려하여 선정한 12개 품종을 대상으로 광질, 광량, 그리고 토양 조건을 검토함으로써 콩에 최적화된 세대단축 시스템 프로토콜을 설정하는 것을 목표로 하였고, 그 결과는 다음과 같다. 1. 10시간의 단일 광 조건에서, 광질 1:1:1비율일 때, 광량이 400 PPFD에서 900 PPFD, 1,300 PPFD로 증가함에 따라 개화일수, 평균 절간장, 경장은 감소한 반면, 절수, 협수, 립수는 증가하였다. 2. 상토에서의 재배는 배양토에 비해 개체 별 절수, 협수, 립수가 50% 이상 증가하였다. 3. 광질에서 적색광의 비율이 증가한 2:1:1비율 조건은 1:1:1비율 조건과 비교하여 개화일수가 약 15일 이상 소요되는 것으로 나타났다. 4. 상기 조건에 따라 세대단축 시스템을 적용하였을 경우 모든 품종에서 약 30일 내외로 개화가 확인되었으며, 60일에서 70일 이내에 8립 이상의 종자 수확이 가능하였다. 5. 본 연구 결과로 구축된 세대단축 시스템을 적용한다면 연간 최대 6세대의 진전이 가능하며, 디지털 육종과 유전자 편집과 같은 현대적인 작물 육종 기술과의 결합을 통해 새로운 작물 개발을 가속화시킬 수 있을 것이다.

Plant breeding is a time-consuming process, mainly due to the limited annual generational advancement. A speed breeding system, using LED light sources, has been applied to accelerate generational progression in various crops. However, detailed protocols applicable to soybeans are still insufficient. In this study, we report the optimized protocols for a speed breeding system comprising 12 soybean varieties with various maturity ecotypes. We investigated the effects of two light qualities (RGB ratio), three levels of light intensity (PPFD), and two soil conditions on the flowering time and development of soybeans. Our results showed that an increase in the red wavelength of the light spectrum led to a delay in flowering time. Furthermore, as light intensity increased, flowering time, average internode length, and plant height decreased, while the number of nodes, branches, and pods increased. When compared to agronomic soil, horticultural soil resulted in an increase of more than 50% in the number of nodes, branches, and pods. Consequently, the optimal conditions were determined as follows: a 10-hour short-day photoperiod, an equal RGB ratio (1:1:1), light intensity exceeding 1,300 PPFD, and the use of horticultural soil. Under these conditions, the average flowering time was found to be 27.3±2.48 days, with an average seed yield of 7.9±2.67. Thus, the speed breeding systems reduced the flowering time by more than 40 days, compared to the average flowering time of Korean soybean resources (approximately 70 days). By using a controlled growth chamber that is unaffected by external environmental conditions, up to 6 generations can be achieved per year. The use of LED illumination and streamlined facilities further contributes to cost savings. This study highlights the substantial potential of integrating modern crop breeding techniques, such as digital breeding and genetic editing, with generational shortening systems to accelerate crop improvement.

키워드

과제정보

본 논문은 차세대 농작물 신육종기술 개발사업(RS-2022-RD009520)의 지원에 의해 수행된 결과입니다. 연구과제의 실험 진행을 도와 주신 국립식량과학원 기초기반과 강현애, 송지연 선생님께 감사드립니다.

참고문헌

  1. Ahmar, S., R. A. Gill, K.-H. Jung, A. Faheem, M. U. Qasim, M. Mubeen, and W. Zhou. 2020. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International Journal of Molecular Sciences. 21 : 2590.
  2. Atlin, G. N., J. E. Cairns, and B. Das. 2017. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Sec. 12 : 31-37. https://doi.org/10.1016/j.gfs.2017.01.008
  3. Casal, J. J. 2013. Photoreceptor signaling networks in plant responses to shade. Annual Review of Plant Biology 64 : 403-427. https://doi.org/10.1146/annurev-arplant-050312-120221
  4. Cazzola, F., C. J. Bermejo, M. F. Guindon, and E. Cointry. 2020. Speed breeding in pea (Pisum sativum L.), an efficient and simple system to accelerate breeding programs. Euphytica. 216 : 178.
  5. Cho, C., D.-Y. Kim, M. S. Cho, M. Jin, and M.-S. Seo. 2021. Efficient Isolation and Gene Transfer of Protoplast in Korean Soybean (Glycine max (L.) Merr.) Cultivars. Korean Journal of Breeding Science. 53.
  6. Choi, Y.-M., M.-C. Lee, N. Ro, S. Lee, J.-G. Gwag, and A. M. -S. Yoon. 2014. Morphological Characteristics and SSR Profilings of Soybean Landraces of Korea. Korean Journal of Breeding Science. 46(4) : 353-363. https://doi.org/10.9787/KJBS.2014.46.4.353
  7. Craig, D. S. and E. S. Runkle. 2013. A moderate to high red to far-red light ratio from light-emitting diodes controls flowering of short-day plants. Journal of the American Society for Horticultural Science. 138 : 167-172. https://doi.org/10.21273/JASHS.138.3.167
  8. Eskins, K. 1992. Light-quality effects on Arabidopsis development. Red, blue and far-red regulation of flowering and morphology. Physiologia Plantarum. 86 : 439-444. https://doi.org/10.1111/j.1399-3054.1992.tb01341.x
  9. Franzen, D. W. 1999. Soybean soil fertility. North Dakota State University Extension Service, SF-1164, Fargo, ND, USA.
  10. Ghosh, S., A. Watson, O. E. Gonzalez-Navarro, R. H. Ramirez-Gonzalez, L. Yanes, M. Mendoza-Suarez, J. Simmonds, R. Wells, T. Rayner, and P. Green. 2018. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols. 13 : 2944-2963. https://doi.org/10.1038/s41596-018-0072-z
  11. Jahne, F., V. Hahn, T. Wurschum, and W. L. Leiser. 2020. Speed breeding short-day crops by LED-controlled light schemes. Theoretical and Applied Genetics. 133 : 2335-2342. https://doi.org/10.1007/s00122-020-03601-4
  12. Jeong, N., K.-S. Kim, S. Jeong, J.-Y. Kim, S.-K. Park, J. S. Lee, S.-C. Jeong, S.-T. Kang, B.-K. Ha, and D.-Y. Kim. 2019. Korean soybean core collection: Genotypic and phenotypic diversity population structure and genome-wide association study. PLoS One. 14 : e0224074.
  13. Jung, K. Y., D. H. Gong, S. Lee, H. C. Chun, C. S. Eun, and J. S. Ho. 2023. Characteristics of Soybean Growth and Yield according to Integrated Irrigation and Drainage Water Management. Journal of Agriculture & Life Science. 57(3) : 31-37.
  14. Jung, K.-Y., E.-S. Yun, C.-Y. Park, J.-B. Hwang, Y.-D. Choi, and K.-D. Park. 2011. Stress day index to predict soybean yield response by subsurface drainage in poorly drained sloping paddy fields. Korean Journal of Soil Science and Fertilizer. 44 : 702-708. https://doi.org/10.7745/KJSSF.2011.44.5.702
  15. Kim, M.-J., H. J. Kim, J. H. Pak, H. S. Cho, H. K. Choi, H. W. Jung, D. H. Lee, and Y.-S. Chung. 2017. Overexpression of AtSZF2 from Arabidopsis showed enhanced tolerance to salt stress in soybean. Plant Breeding and Biotechnology. 5 : 1-15. https://doi.org/10.9787/PBB.2017.5.1.1
  16. Kwon, S., J. Kim, H. Song, and K. Im. 1974. Characteristics of important agronomic traits of Korean local soybean collections. Korean J. Breed. Sci. 6 : 67-70.
  17. Lee, D., K. Han, J. H. Kim, T. -H. Jun, and J. S. Lee. 2023. Development of Speed-Breeding System for Korean Soybean Varieties [ Glycine max a (L.) Merr] Using LED Light Source. Plant Breeding and Biotechnology. 11 : 49-55. https://doi.org/10.9787/PBB.2023.11.1.49
  18. Lee, J.-D., M. Kim, K. P. Kulkarni, and J. T. Song. 2018. Agronomic traits and fatty acid composition of high-oleic acid cultivar Hosim. Plant Breeding and Biotechnology. 6 : 44-50. https://doi.org/10.9787/PBB.2018.6.1.44
  19. Natarajan, S., D. Luthria, H. Bae, D. Lakshman, and A. Mitra. 2013. Transgenic soybeans and soybean protein analysis: an overview. Journal of Agricultural and Food Chemistry. 61 : 11736-11743. https://doi.org/10.1021/jf402148e
  20. Pedersen, P., S. Kumudini, J. Board, and S. Conley. 2004. Soybean growth and development. Iowa State University, University Extension Ames, IA.
  21. Poole, C., R. Skaggs, G. Cheschier, M. Youssef, and C. Crozier. 2009. Effects of drainage water management on crop yields. ASABE Annual International Meeting. Reno, Nevada.
  22. Rizzo, G. and L. Baroni. 2018. Soy, soy foods and their role in vegetarian diets. Nutrients. 10 : 43.
  23. Smith, H. and G. Whitelam. 1997. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant, Cell & Environment. 20 : 840-844. https://doi.org/10.1046/j.1365-3040.1997.d01-104.x
  24. Song, J. H., G. Shin, H. J. Kim, S. B. Lee, J. Y. Moon, J. C. Jeong, H.-K. Choi, I. A. Kim, H. J. Song, and C. Y. Kim. 2022a. Mutation of GmIPK1 gene using CRISPR/Cas9 reduced phytic acid content in soybean seeds. International Journal of Molecular Sciences. 23 : 10583.
  25. Song, Y., X. Duan, P. Wang, X. Li, X. Yuan, Z. Wang, L. Wan, G. Yang, and D. Hong. 2022b. Comprehensive speed breeding: a high-throughput and rapid generation system for long-day crops. Plant Biotechnol. J. 20 : 13-15. https://doi.org/10.1111/pbi.13726
  26. Wanga, M. A., H. Shimelis, J. Mashilo, and M. D. Laing. 2021. Opportunities and challenges of speed breeding: A review. Plant Breeding. 140 : 185-194. https://doi.org/10.1111/pbr.12909
  27. Watson, A., S. Ghosh, M. J. Williams, W. S. Cuddy, J. Simmonds, M.-D. Rey, M. Asyraf Md Hatta, A. Hinchliffe, A. Steed, D. Reynolds, N. M. Adamski, A. Breakspear, A. Korolev, T. Rayner, L. E. Dixon, A. Riaz, W. Martin, M. Ryan, D. Edwards, J. Batley, H. Raman, J. Carter, C. Rogers, C. Domoney, G. Moore, W. Harwood, P. Nicholson, M. J. Dieters, I. H. Delacy, J. Zhou, C. Uauy, S. A. Boden, R. F. Park, B. B. H. Wulff, and L. T. Hickey. 2018. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants. 4 : 23-29. https://doi.org/10.1038/s41477-017-0083-8
  28. Wieczorek, A. and M. Wright. 2012. History of agricultural biotechnology: How crop development has evolved. Nature Education Knowledge. 3 : 9.