DOI QR코드

DOI QR Code

온탕침지법과 석회유황합제 처리가 유기농 밀 종자의 발아와 소독효과 미치는 영향 평가

Assessment of Hot Water Treatment and Lime Sulfur Mixture on Germination and Disinfection Efficacy of Organic Wheat Seeds

  • Min-Jeong Kim (Organic Agriculture Division, National Institute of Agriculture Sciences) ;
  • One-Sung Park (Organic Agriculture Division, National Institute of Agriculture Sciences) ;
  • Chang-Ki Shim (Organic Agriculture Division, National Institute of Agriculture Sciences) ;
  • Jae-Hyeong Lee (Organic Agriculture Division, National Institute of Agriculture Sciences)
  • 투고 : 2023.10.26
  • 심사 : 2023.11.24
  • 발행 : 2023.12.01

초록

본 연구는 온탕침지법과 석회유황합제 처리가 유기농 조경밀, 금강밀, 새금강밀 및 백강밀 종자의 발아와 소독에 미치는 영향을 구명하고자 수행하였다. 4종의 밀 품종은 소독 전 종자의 발아율이 평균 86.3±2.5~87.5±2.9%이었으나 곰팡이와 세균에 의한 감염 정도는 각각 평균 22.5±2.9~38.3±2.5%, 18.8±4.8~23.8±2.5%로 나타났다. 4종의 밀 품종에 대한 온탕침지 조건에 따른 종자의 발아율은 무처리에 비해 동일하거나 높았으며 온탕침지 온도와 처리 시간이 증가할수록 곰팡이와 세균의 오염도가 감소하였다. 밀 종자에 대한 최적 온탕침지 조건 55℃에서 10분간 처리하는 것이 무처리에 비해 발아율이 평균 90.0±0.0~97.5±2.9%로 동일하거나 높았고 곰팡이와 세균의 소독효과는 각각 평균 83.3~93.5%와 100%로 높았다. 또한, 0.2%와 0.4% 석회유황합제의 처리시간에 따른 밀품종별 발아율과 곰팡이, 세균의 소독효과를 조사하였더니, 처리 시간의 경과에 따라 밀 품종 간에 발아율의 차이를 보이지 않았으나 무처리(86.3~87.5%)에 비해 발아율이 높았고 최적 처리 시간은 7분 또는 10분으로 곰팡이와 세균의 오염도를 평균 90.0~96.0% 감소시켰다. 따라서 4종의 유기농 밀 종자 소독을 위해 적용한 온탕침지와 석회유황합제의 처리 조건에 따라 발아율과 소독효과의 차이는 있으나 55℃, 10분 온탕침지 처리를 하거나 0.2% 또는 0.4% 석회유황합제를 10분간 처리하는 것이 무처리에 비해 발아율을 증진하고 종자에 오염된 곰팡이와 세균의 밀도를 감소시켜 친환경적인 밀 종자 소독기술로 농업현장에서 활용도가 높을 것으로 판단된다.

This study aimed to estimate optimal treatment for enhancing the germination rate and disinfections effect of organic wheat varieties, Jokyung, Geumgang, Saegumgang, and Baekgang using hot water treatment and lime sulfur mixture. Before disinfection, the germination rates of the seeds averaged 86.3±2.5% to 87.5±2.9%, while the infection levels caused by fungi and bacteria were observed to be 22.5±2.9% to 38.3±2.5% and 18.8±4.8% to 23.8±2.5%, respectively. The germination rates of four wheat varieties under hot water treatments were either the same or higher compared to untreated seeds. As the temperature and treatment time of hot water treatment increased, the contamination levels of fungi and bacteria decreased. The optimal hot water treatment for the seeds was observed at 55℃ for 10 minutes, resulting in germination rates averaging 90.0±0.0% to 97.5±2.9%, which were either the same or higher than untreated seeds. The disinfection effectiveness against fungi and bacteria was high, averaging 83.3~93.5% and 100%, respectively. Additionally, an investigation was conducted on the germination rates and microbial disinfection efficacy of 0.2% and 0.4% lime-sulfur mixture with varying treatment times, 3 to10 minutes for each wheat variety. As the treatment time elapsed, no significant differences in germination rates were observed among four wheat varieties. However, the germination rates were higher compared to the untreated group (86.3~87.5%), and the optimal treatment time was found to be 7 minutes or 10 minutes, resulting in an average reduction of 90.0~96.0% in contamination levels of fungi and bacteria. Therefore, the germination rates and disinfection effects varied depending on the treatment conditions of hot water treatment and lime-sulfur mixture applied for the disinfection of the four varieties of organic wheat seeds. However, it is considered that treating the seeds with hot water treatment at 55℃ for 10 minutes or with 0.2% or 0.4% lime-sulfur compound for 10 minutes enhances germination rates and reduces the contamination rate of fungi and bacteria compared to untreated seeds. Thus, these environmentally friendly seed disinfection technologies are likely to be highly useful in agricultural fields.

키워드

과제정보

본 논문은 농촌진흥청 어젠다 과제 PJ01677001 지원에 의해 이루어진 연구결과의 일부임.

참고문헌

  1. Ann, H. D. Heather, C. Erica, M. Gabriella, and M. Rory. 2018. Germination in spring grains treated with organic seed amendments and aerated steam. Northwest Crops & Soils Program. 301.
  2. Barnett, H. L. and B. B. Hunter. 1998. Illustrated genera of imperfect fungi. 4th APS Press, USA. p. 218.
  3. Banziger, I., A. Kagi, S. Vogelgsang, S. Klaus, T. Hebeisen, A. B. Mainil, and K. S. Sullam 2022. Comparison of thermal seed treatments to control snow mold in wheat and loose smut of barley. Frontiers in Agronomy. 3 : 775243.
  4. Banziger, I., H. Hebeisen, D. Amrein, S. Vogelgsang, and K. Sullam. 2023. Investigation of seed grain health allows to reduce the application of plant protection products. Swiss Agr. Res. 14 : 33-42.
  5. Choi, J. S. 2017. Seed-surface disinfection and germination effects of grapefruit seed extract (GSE) on Lactuca sativa seeds. Toxicol. Environ. Health Sci. 9 : 169-175. https://doi.org/10.1007/s13530-017-0318-0
  6. de Lima, C. B., L. L. A. Rentschler, J. T. Bueno, and A. C. Boaventura. 2016. Plant extracts and essential oils on the control of Alternaria alternata, Alternaria dauci and on the germination and emergence of carrot seeds (Daucus carota L.). Cienc. Rural. Santa Maria. 46 : 764-770. http://dx.doi.org/10.1590/0103-8478cr20141660.
  7. Forsberg, G. 2004. Control of Cereal Seed-Borne Diseases by Hot Humid Air Seed Treatment. Ph. D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden. https://pub.epsilon.slu.se/516/1/Sammanfattning_slutkorrigerad.pdf. Last accessed on January 4, 2022.
  8. Forsberg, G., L. Johnsson, and J. Lagerholm. 2005. Effects of aerated steam seed treatment on cereal seed-borne diseases and crop yield. J. Plant Dis. Prot. 112 : 247-256.
  9. Gamage, A., R. Gangahagedara, J. Gamage, N. Jayasinghe, N. Kodikara, P. Suraweera, and O. Merah. 2023. Role of organic farming for achieving sustainability in agriculture. Farming System. 1 : 100005.
  10. Gaur, A., A. Kumar, R. Kiran, and P. Kumari. 2020. Importance of seed-borne diseases of agricultural crops: Economic losses and impact on society. In: Seed-borne Diseases of Agricultural Crop: Detection, Diagnosis & Management. pp. 3-23.
  11. Gaurilcikiene, I., J. Ramanauskiene, M. Dagys, R. Simniskis, , Z. Dabkevicius, and S. Suproniene. 2013. The effect of strong microwave electric field radiation on: (2) wheat (Triticum aestivum L.) seed germination and sanitation. Zemdirb. Agric. 100 : 185-190. https://doi.org/10.13080/z-a.2013.100.024
  12. Gitaitis, R. and R. Walcott. 2007. The epidemiology and management of seedborne bacterial diseases. Annu. Rev. Phytopathol. 45 : 371-397. https://doi.org/10.1146/annurev.phyto.45.062806.094321
  13. Goo, S. G. and J. H. Koo. 2020. EsTableishment of rice bakanae disease management using slightly acidic hypochlorous acid water. J. Life Sci. 30 : 178-185.
  14. Hwang, Y. S. 2012. Agriculture/agricultural policy trends and improvement of food self-sufficiency rate. In : Korean wheat industry symposium. Korean Wheat Industry Association, Seoul, Korea. pp. 20-35.
  15. Kang, C. S., K. H. Kim, Y. W. Seo, S. H. Woo, M. R. Heo, B. K. Choo, J. N. Hyun, K. J. Kim, and C. S. Park. 2014. Current regional cultural situation and evaluation of grain characteristics of Korean wheat. I. Survey of production practices in Korean wheat cultivar growers by region. Korean J. Crop Sci. 59 : 1-15. https://doi.org/10.7740/kjcs.2014.59.1.001
  16. Kim, M. J., C. K. Shim, and J. H. Lee. 2022a. Research on eco-friendly disinfection technologies of vegetable seeds for safe production of agricultural crops. J. Korean Soc. Int. Agric. 34 : 122-136. https://doi.org/10.12719/KSIA.2022.34.2.122
  17. Kim, M. J., C. K. Shim, J. H. Lee, and C. Wangchuk. 2022b. Hot water treatment as seed disinfection techniques for organic and eco-friendly environmental agricultural crop cultivation. Agriculture. 12 : 1081.
  18. Kim, S. J., J. G. Won, D.J. Ahn, S. D. Park, and C. D. Choi. 2008. Occurrence of bakanae disease (Gibberella fujikuroi) growth characteristics of rice by different disinfection methods. Korean J. Crop Sci. 53 : 417-420.
  19. Lee, D. H. 1986. Barley and wheat grains infectious diseases and control strategies; insufficient plant pathogens testing easily facilitates spread. Life and Pesticides. 7 : 91-98
  20. Lee, S. W. 2017. Fungicidal and insecticidal activity of loess-sulfur complex against Gibberella fujikuroi and Nilaparvata lugens. The Master Degree Thesis of Paichai University. Daejeon, Korea. p. 41.
  21. Leonard, G. and A. Williams. 2011. European organic wheat suffers from "stinking smut" disease due to lack of fungicide seed treatment. International Pesticide Benefits Case Study No. 13.
  22. Liatukas, Z., S. Suproniene, V. Ruzgas, and A. Leistrumaite. 2019. Effects of organic seed treatment methods on spring barley seed quality, crop, productivity and disease incidence. Zemdirb. Agric. 106 : 241-248. https://doi.org/10.13080/z-a.2019.106.031
  23. Los, A., D. Ziuzina, and S. Akkermans. 2018. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Research International. 106 : 509-521. https://doi.org/10.1016/j.foodres.2018.01.009.
  24. Miller, S. A., I. Lewis, and L. Melanie. 2004. Hot water treatment of vegeTablee seeds to eradicate bacterial plant pathogens in organic production systems. Ohio State University Extension Factsheet HYG-3086-05. http://onioline.osu.edu/hygfact/3000/pdf/3086.pdf.
  25. Moore, J. M., K. E. Ileleji, and K. Keener. 2020. Factors that affect high voltage atmospheric cold plasma treatment efficacy on wet distillers' grains: Shelf-life and nutrient composition. J. Cereal Sci. 95 : 103034.
  26. NAAS (National Institute of Agricultural Sciences). 2010. Easy to follow organic farming techniques. Dongshinmunhwasa, Suwon, Korea. p. 83.
  27. Nega, E., R. Ulrich, S.Werner, and M. Jahn. 2003. Hot water treatment of vegeTablee seed: an alternative seed treatment method to control seed-borne pathogens in organic farming. J. Plant Dis. Protec. 10 : 220-234.
  28. Orsini, S., A. Costanzo, F. Solfanelli, R. Zanoli, S. Padel, M. M. Messmer, E. Winter, and F. Schaefer. 2020. Factors affecting the use of organic seed by organic farmers in Europe. Sustainability. 12 : 8540. https://doi.org/10.3390/su12208540.
  29. Park, H. G., H. R. Shin, Y. Lee, S. W. Kim, O. D. Kwon, I. J. Park, and Y. I. Kuk. 2003. Influence of water temperature, soaking period, and chemical dosage on Bakanae disease of rice (Gibberella fujikuroi) in seed disinfection. Korean J. Pest. Sci. 7 : 216-222.
  30. Seong, M. H. 2012. International grain prices rise and the short-term and long-term countermeasures. KREI Agrucultural Policy Focus. 33 : 1-33.
  31. So, H. K., Y. K. Kim, S. J. Hong, E. J. Han, J. H. Park, C. K. Shim, M. J. Kim, and S. C. Kim. 2017. Effect of rice seed disinfection of loess-sulfur on the suppression of bakanae disease caused by Fusarium fujikuroi. Korean J. Org. Agric. 25 : 345-355. https://doi.org/10.11625/KJOA.2017.25.2.345
  32. The Korean Society of Plant Pathology (KSPP). 2009. List of plant disease in Korea (5th). The Korean Society of Plant Pathology, Korea. pp. 22-26.
  33. Vannacci, G. and G. E. Harman. 1987. Biocontrol of seed-borne Alternaria raphani and A. brassicicola. Canadian J. Microbiol. 33 : 850-856. https://doi.org/10.1139/m87-149
  34. Walker, J. C. 1923. Seed treatment and rainfall in relation to the control of cabbage black leg. United States Department of Agriculture Bulletin 1029.
  35. Winter, W., I. Banziger, H. Krebs, A. Ruegger, P. Frei, and D. Gindrat. 1994. Warm water treatment of wheat seed. Agrarforschung. 1 : 492-495.