DOI QR코드

DOI QR Code

Multivariate Characterization of Common and Durum Wheat Collections Grown in Korea using Agro-Morphological Traits

  • Young-ah Jeon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sun-Hwa Kwak (Department of Crop Science and Biotechnology, Jeonbuk National University) ;
  • Yu-Mi Choi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hyemyeong Yoon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Myoung-Jae Shin (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ho-Sun Cheon (Department of Crop Science and Biotechnology, Jeonbuk National University) ;
  • Sieun Choi (Department of Crop Science and Biotechnology, Jeonbuk National University) ;
  • Youngjun Mo (Department of Crop Science and Biotechnology, Jeonbuk National University) ;
  • Chon-Sik Kang (Wheat Research Team, National Institute of Crop Science, Rural Development Administration) ;
  • Kebede Taye Desta (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2023.10.16
  • 심사 : 2023.11.01
  • 발행 : 2023.12.01

초록

Developing improved wheat varieties is vital for global food security to meet the rising demand for food. Therefore, assessing the genetic diversity across wheat genotypes is crucial. This study examined the diversity of 168 durum wheat and 47 common wheat collections from 54 different countries using twelve agro-morphological parameters. Geumgang, a prominent Korean common wheat variety, was used as a control. Both qualitative and quantitative agronomical characteristics showed wide variations. Most durum wheats were shown to possess dense spikes (90%), while common wheats showed dense (40%) or loose (38%) spikes, with yellowish-white being the dominant spike color. The majority of the accessions were awned regardless of wheat type, yellowish-white being the main awn color. White or red kernels were produced, with white kernels dominating in both common (74%) and durum (79%) wheats. Days to heading (DH) and days to maturity (DM) were in the ranges of 166-215 and 208-250 days, respectively, while the culm length (CL), spike length (SL), and awn length (AL) were in the ranges of 53.67-163, 5.33-18.67, and 0.50-19.00 cm, respectively. Durum wheats possessed the shortest average DH, DM, and SL, while common wheat had the longest CL and AL (p < 0.05). Common wheats also exhibited the highest average one-thousand-kernel weight. Hierarchical cluster analysis, aided by principal component analysis, grouped the population into seven clusters with significant differences in their quantitative variables (p < 0.05). In conclusion, this research revealed diversity among common and durum wheat genotypes. Notably, 26 durum wheat and 17 common wheat accessions outperformed the control, offering the potential for developing early-maturing, high-yielding, and lodging-resistant wheat varieties.

키워드

과제정보

This research was funded by the Research Program for Agricultural Science and Technology Development (Project No. PJ017142) of the National Institute of Agricultural Sciences, Rural Development Administration (Jeonju, Korea).

참고문헌

  1. Ambati, D., R. M. Phuke, V. Vani, S. V. Sai Prasad, J. B. Singh, C. P. Patidar, P. Malviya, A. Gautam, and V. G. Dubey. 2020. Assessment of genetic diversity and development of core germplasms in durum wheat using agronomic and grain quality traits. Cereal Res. Commun. 48 : 375-382. https://doi.org/10.1007/s42976-020-00050-z
  2. Baboev, S., H. Muminjanov, K. Turakulov, A. Buronov, I. Mamatkulov, E. Koc, I. Ozturk, S. Dreisigacker, S. Shepelev, and A. Morgounov. 2021. Diversity and sustainability of wheat landraces grown in Uzbekistan. Agronr. Sustain. Dev. 41 : 34.
  3. Bordes, J., G. Branlard, F. X. Oury, G. Charmet, and F. Balfourier. 2008. Agronomic characteristics, grain quality and flour rheology of 372 bread wheats in a worldwide core collection. J. Cereal Sci. 48 : 569-579. https://doi.org/10.1016/j.jcs.2008.05.005
  4. Cao, X., S. Mondal, D. Cheng, C. Wang, A. Liu, J. Song, H. Li, Z. Zhao, and J. Liu. 2015. Evaluation of agronomic and physiological traits associated with high temperature stress tolerance in the winter wheat cultivars. Acta Physiol. Plant. 37 : 90.
  5. Choi, C., Y.-M. Yoon, J.-H. Son, S.-W. Cho, and C.-S. Kang. 2018. Current Status and Prospect of Wheat Functional Genomics using Next Generation Sequencing. Korean J. Breed. Sci. 50 : 364-377 (in Korean). https://doi.org/10.9787/KJBS.2018.50.4.364
  6. Dagnaw, T., B. Mulugeta, T. Haileselassie, M. Geleta, and K. Tesfaye. 2022. Phenotypic Variability, Heritability and Associations of Agronomic and Quality Traits in Cultivated Ethiopian Durum Wheat (Triticum turgidum L. ssp. Durum, Desf.). Agronomy. 12 : 1714.
  7. De Flaviis, R., G. Tumino, V. Terzi, C. Morcia, V. Santarelli, G. Sacchetti, and D. Mastrocola. 2022. Exploration of the Genetic Diversity of Solina Wheat and Its Implication for Grain Quality. Plants. 11 : 1170.
  8. Dodig, D., M. Zoric, B. Kobiljski, J. Savic, V. Kandic, S. Quarrie, and J. Barnes. 2012. Genetic and association mapping study of wheat agronomic traits under contrasting water regimes. Int. J. Mol. Sci. 13 : 6167-6188. https://doi.org/10.3390/ijms13056167
  9. Faltermaier, A., D. Waters, T. Becker, E. Arendt, and M. Gastl. 2014. Common wheat (Triticum aestivum L.) and its use as a brewing cereal - a review. J. Inst. Brew. 120 : 1-15. https://doi.org/10.1002/jib.107
  10. Food and Agricultural Organization of the United Nations (FAO). 2021. http://www.fao.org/faostat/ (Access date : September 27, 2023).
  11. Gayacharan, C., K. Tripathi, S. K. Meena, B. S. Panwar, H. Lal, J. C. Rana, and K. Singh. 2020. Understanding genetic variability in the mungbean (Vigna radiata L) genepool. Ann. Appl. Biol. 177 : 346-357. https://doi.org/10.1111/aab.12624
  12. Gupta, R., M. Meghwal, and P. K. Prabhakar. 2021. Bioactive compounds of pigmented wheat (Triticum aestivum) : Potential benefits in human health. Trends in Food Science & Technology. 110 : 240-252. https://doi.org/10.1016/j.tifs.2021.02.003
  13. Huang, D., Q. Zheng, T. Melchkart, Y. BekkaouI, D. J. F. Konkin, S. Kagale, M. Martucci, F. M. You, M. Clarke, N. M. Adamski, C. Chinoy, A. Steed, C. A. McCartney, A. J. Cutler, P. Nicholson, and J. A. Feurtado. 2020. Dominant inhibition of awn development by a putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat. New Phytologist. 225 : 340-355. https://doi.org/10.1111/nph.16154
  14. Irfan Ullah, M., S. Mahpara, R. Bibi, R. Ullah Shah, R. Ullah, S. Abbas, M. Ihsan Ullah, A. M. Hassan, A. M. El-Shehaw, M. Brestic, M. Zivcak, and M. Ifnan Khan. 2021. Grain yield and correlated traits of bread wheat lines : Implications for yield improvement. Saudi Journal of Biological Sciences. 28 : 5714-5719. https://doi.org/10.1016/j.sjbs.2021.06.006
  15. Jung, J. Y., J. H. Kim, M. Baek, C. Cho, J. Cho, J. Kim, W. Pavan, and K. H. Kim. 2022. Adapting to the projected epidemics of Fusarium head blight of wheat in Korea under climate change scenarios. Front Plant Sci. 9 : 1040752.
  16. Jung, W. J., Y. J. Lee, C. S. Kang, and Y. W. Seo. 2021. Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis. BMC Plant Biol. 21 : 1-14. https://doi.org/10.1186/s12870-020-02777-7
  17. Kang, S.-W., K.-M. Kim, T.-G. Kang, C.-S. Kang, J. Chun, C. S. Park, and S.-W. Cho. 2019. Mapping of QTL for Yield Traits in Recombinant Inbred Lines Derived from Korean Wheat with Long Spike Length. Korean J Breed. Sci. 51 : 376-385(in Korean). https://doi.org/10.9787/KJBS.2019.51.4.376
  18. Khan, H., H. M. Mamrutha, C. N. Mishra, G. Krishnappa, R. Sendhil, O. Parkash, A. K. Joshi, R. Chatrath, B. S. Tyagi, G. Singh, and G. P. Singh. 2023. Harnessing High Yield Potential in Wheat (Triticum aestivum L.) under Climate Change Scenario. Plants. 12 : 1-14. https://doi.org/10.3390/plants12061271
  19. Kumar, S., J. Kumari, N. Bhusal, A. K. Pradhan, N. Budhlakoti, D. C. Mishra, D. Chauhan, S. Kumar, A. K. Singh, M. Reynolds, G. P. Singh, K. Singh, and S. Sareen. 2020. Genome-Wide Association Study Reveals Genomic Regions Associated with Ten Agronomical Traits in Wheat Under Late-Sown Conditions. Front. Plant Sci. 11 : 549743.
  20. Larkin, D. L., D. N. Lozada, and R. E. Mason. 2019. Genomic selection-Considerations for successful implementation in wheat breeding programs. Agronomy. 9 : 479.
  21. Lee, G. H., C. H. Choi, and J. Y. Kim. 2021a. Current Status of Precision Breeding Technology and Plant Transformation for Development of Wheat Breeding Material. Korean J. Breed. Sci. 53 : 250-265 (in Korean). https://doi.org/10.9787/KJBS.2021.53.3.250
  22. Lee, Y. J., J. S. Yoon, C.-S. Kang, Y. M. Choi, K. H. Joung, and Y. W. Seo. 2021b. Selection of Wheat Germplasm in Korean Production Environments employing Agronomic Characteristics and Adaptation Analysis. Korean J. Breed. Sci. 53 : 42-52. https://doi.org/10.9787/KJBS.2021.53.1.42
  23. Li, L., H. Zhang, J. Liu, T. Huang, X. Zhang, H. Xie, Y. Guo, Q. Wang, P. Zhang, and P. Qin. 2023. Grain color formation and analysis of correlated genes by metabolome and transcriptome in different wheat lines at maturity. Front. Nutr. 10 : 1112497.
  24. Liu, H., J. Ma, Y. Tu, J. Zhu, P. Ding, J. Liu, T. Li, Y. Zou, A. Habib, Y. Mu, H. Tang, Q. Jiang, Y. Liu, G. Chen, Y. Zheng, Y. Wei, and X. Lan. 2020. Several stably expressed QTL for spike density of common wheat (Triticum aestivum) in multiple environments. Plant Breed. 139 : 284-294. https://doi.org/10.1111/pbr.12782
  25. Ma, C., L. Liu, T. Liu, Y. Jia, Q. Jian, H. Bai, S. Ma, S. Li, and Z. Wang. 2023. QTL Mapping for Important Agronomic Traits Using a Wheat55K SNP Array-Based Genetic Map in Tetraploid Wheat. Plants. 12 : 847.
  26. Ma, J., H. Zhang, S. Li, Y. Zou, T. Li, J. Liu, P. Ding, Y. Mu, H. Tang, M. Deng, Y. Liu, Q. Jiang, G. Chen, H. Kang, W. Li, Z, Pu, Y. Wei, Y. Zheng, and X. Lan. 2019. Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genet. 20 : 1-12. https://doi.org/10.1186/s12863-019-0782-4
  27. Matsuyama, H. 2022. Breeding and Agronomic Research on Lodging Resistance and Culm Strength of Japanese Wheat Cultivars. Japan Agric. Res. Q 56 : 303-311. https://doi.org/10.6090/jarq.56.303
  28. Matus-Cadiz, M. A., P. Hucl, C. E. Perron, and R. T. Tyler. 2003. Genotype X environment interaction for grain color in hard white spring wheat. Crop Sci. 43 : 219-226. https://doi.org/10.2135/cropsci2003.2190
  29. Mengistu, D. K., A. Y. Kiros, and M. E. Pe. 2015. Phenotypic diversity in Ethiopian durum wheat (Triticum turgidum var. durum) landraces. Crop J. 3 : 190-199. https://doi.org/10.1016/j.cj.2015.04.003
  30. Mohammadi, R., A. Etminan, and L. Shoshtari. 2019. Agro-physiological characterization of durum wheat genotypes under drought conditions. Exp. Agric. 55 : 484-499. https://doi.org/10.1017/S0014479718000133
  31. Mondal, S., R. P. Singh, E. R. Mason, J. Huerta-Espino, E. Autrique, and A. K. Joshi. 2016. Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia. Field Crops Res. 192 : 78-85. https://doi.org/10.1016/j.fcr.2016.04.017
  32. Niu, J., S. Zheng, X. Shi, Y. Si, S. Tian, Y. He, and H. Q. Ling. 2020. Fine mapping and characterization of the awn inhibitor B1 locus in common wheat (Triticum aestivum L.). Crop J. 8 : 613-622. https://doi.org/10.1016/j.cj.2019.12.005
  33. Ntakirutimana, F. and W. Xie. 2020. Unveiling the actual functions of awns in grasses : From yield potential to quality traits. Int. J. Mol. Sci. 21 : 7593.
  34. Ormoli, L., C. Costa, S. Negri, M. Perenzin, and P. Vaccino. 2015. Diversity trends in bread wheat in Italy during the 20th century assessed by traditional and multivariate approaches. Sci. Rep. 5 : 1-7. https://doi.org/10.1038/srep08574
  35. Pignone, D., D. De Paola, N. Rapana, and M. Janni. 2015. Single seed descent : a tool to exploit durum wheat (Triticum durum Desf.) genetic resources. Genet. Resour. Crop Evol. 62 : 1029-1035. https://doi.org/10.1007/s10722-014-0206-2
  36. Rahimi, Y., M. R. Bihamt, A. Taleei, H. Alipour, and P. K. Ingvarsson. 2019. Genome-wide association study of agronomic traits in bread wheat reveals novel putative alleles for future breeding programs. BMC Plant Biol. 19 : 1-19. https://doi.org/10.1186/s12870-018-1600-2
  37. Ren, J., L. Chen, D. Sun, F. M. You, J. Wang, Y. Peng, E. Nevo, A. Beiles, M. C. Sun Dongfa Luo, and J. Peng. 2013. SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evol. Biol. 13 : 169.
  38. Royo, C., J. M. Soriano, R. Rufo, and C. Guzman. 2022. Are the agronomic performance and grain quality characteristics of bread wheat Mediterranean landraces related to the climate prevalent in their area of origin? J. Cereal Sci. 105 : 103478.
  39. Royo, C., M. Maccaferri, F. Alvaro, M. Moragues, M. C. Sanguineti, R. Tuberosa, F. Maalouf, L. F. G. Moral, A. del Demontis, S. Rhouma, M. Nachit, N. Nserallah, and D. Villegas. 2010. Understanding the relationships between genetic and phenotypic structures of a collection of elite durum wheat accessions. Field Crops Res. 119 : 91-105. https://doi.org/10.1016/j.fcr.2010.06.020
  40. Rural Development Administration (RDA). 2006. Manual on investigation of characteristics and management of genetic resources : Wheat (In Korean). pp. 31-36.
  41. Rural Development Administration (RDA). 2020. Agricultural Technology Guide : Wheat (In Korean). pp. 121-129.
  42. Sanchez-Bragado, R., G. Molero, J. L. Araus, and G. A. Slafer. 2023. Awned versus awnless wheat spikes : does it matter? Trends Plant Sci. 28 : 330-343. https://doi.org/10.1016/j.tplants.2022.10.010
  43. Shah, L., M. Yahya, S. M. A. Shah, M. Nadeem, A. Ali, A. Ali, J. Wang, M. W. Riaz, S. Rehman, W. Wu, R. M. Khan, A. Abbas, A. Riaz, G. B. Anis, H. Si, H. Jiang, and C. Ma. 2019. Improving lodging resistance : using wheat and rice as classical examples. Int. J. Mol. Sci. 20 : 4211.
  44. Sheoran, S., S. Jaiswal, D. Kumar, N. Raghav, R. Sharma, S. Pawar, S. Paul, M. A. Iquebal, A. Jaiswar, P. Sharma, R. Singh, C. P. Singh, A. Gupta, N. Kumar, U. B. Angadi, A. Rai, G. P. Singh, D. Kumar, and R. Tiwari. 2019. Uncovering genomic regions associated with 36 agro-morphological traits in Indian spring wheat using GWAS. Front. Plant Sci. 10 : 527.
  45. Son, J.-H., C.-S. Kang, Y.-K. Cheong, K.-H. Kim, H.-S. Kim, J.-C. Park, K.-H. Kim, B.-K. Kim, and C. S. Park. 2015. Characterization of Korean Wheat Line with Lonhg spike I. Agronomic traits and genetic variations. Korean J. Breed. Sci. 47 : 219-228 (in Korean). https://doi.org/10.9787/KJBS.2015.47.3.219
  46. Sun, C., H. Hu, Y. Cheng, X. Yang, Q. Qiao, C. Wang, L. Zhang, D. Chen, S. Zhao, Z. Dong, and F. Chen. 2023. Genomics-assisted breeding : The next-generation wheat breeding era. Plant Breed. 142 : 259-268. https://doi.org/10.1111/pbr.13094
  47. Tajibayev, D., K. Mukin, A. Babkenov, V. Chudinov, A. A. Dababat, K. Jiyenbayeva, S. Kenenbayev, T. Savin, V. Shamanin, K. Tagayev, A. Rsymbetov, M. Yessimbekova, V. Yusov, R. Zhylkybaev, A. Morgounov, M. T. Altaf, M. A. Nadeem, and F. S. Baloch. 2023. Exploring the Agronomic Performance and Molecular Characterization of Diverse Spring Durum Wheat Germplasm in Kazakhstan. Agronomy. 13 : 1955.
  48. Yang, F., J. Zhang, Q. Liu, H. Liu, Y. Zhou, W. Yang, and W. Ma. 2022. Improvement and Re-Evolution of Tetraploid Wheat for Global Environmental Challenge and Diversity Consumption Demand. Int. J. Mol. Sci. 23 : 2206.
  49. You, J., H. Liu, S. Wang, W. Luo, L. Gou, H. Tang, Y. Mu, M. Deng, Q. Jiang, G. Chen, P. Qi, Y. Peng, L. Tang, A. Habib, Y. Wei, Y. Zheng, X. Lan, and J. Ma. 2021. Spike Density Quantitative Trait Loci Detection and Analysis in Tetraploid and Hexaploid Wheat Recombinant Inbred Line Populations. Front. Plant Sci. 12 : 1-12. https://doi.org/10.3389/fpls.2021.796397