Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1D1A3B03930584).
References
- Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol 2010; 53(2): 372-384. https://doi.org/10.1016/j.jhep.2010.04.008
- The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Clin Liver Dis (Hoboken) 2018; 11(4): 81.
- Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2022; 7(9): 851-861. https://doi.org/10.1016/S2468-1253(22)00165-0
- Im HJ, Ahn YC, Wang JH, Lee MM, Son CG. Systematic review on the prevalence of nonalcoholic fatty liver disease in South Korea. Clin Res Hepatol Gastroenterol 2021; 45(4): 101526.
- Negi CK, Babica P, Bajard L, Bienertova-Vasku J, Tarantino G. Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease. Metabolism 2022; 126: 154925.
- Pallayova M, Taheri S. Non-alcoholic fatty liver disease in obese adults: clinical aspects and current management strategies. Clin Obes 2014; 4(5): 243-253. https://doi.org/10.1111/cob.12068
- Dharmalingam M, Yamasandhi PG. Nonalcoholic fatty liver disease and type 2 diabetes mellitus. Indian J Endocrinol Metab 2018; 22(3): 421-428. https://doi.org/10.4103/ijem.IJEM_585_17
- Hirano T. Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb 2018; 25(9): 771-782. https://doi.org/10.5551/jat.RV17023
- Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA, et al. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty fiver disease (NAFLD). J Diabetes Res 2020; 2020: 3920196.
- Deng KQ, Huang X, Lei F, Zhang XJ, Zhang P, She ZG, et al. Role of hepatic lipid species in the progression of nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2022; 323(2): C630-C639. https://doi.org/10.1152/ajpcell.00123.2022
- Petersen MC, Shulman GI. Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends Pharmacol Sci 2017; 38(7): 649-665.
- Linden AG, Li S, Choi HY, Fang F, Fukasawa M, Uyeda K, et al. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J Lipid Res 2018; 59(3): 475-487. https://doi.org/10.1194/jlr.M081836
- Xu X, So JS, Park JG, Lee AH. Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis 2013; 33(4): 301-311. https://doi.org/10.1055/s-0033-1358523
- Matsuzaka T, Shimano H. New perspective on type 2 diabetes, dyslipidemia and non-alcoholic fatty liver disease. J Diabetes Investig 2020; 11(3): 532-534. https://doi.org/10.1111/jdi.13258
- Ahmad SD, Sabir SM, Zubair M. Ecotypes diversity in autumn olive (Elaeagnus umbellata Thunb): a single plant with multiple micronutrient genes. Chem Ecol 2006; 22(6): 509-521. https://doi.org/10.1080/02757540601024819
- Fordham IM, Clevidence BA, Wiley ER, Zimmerman RH. Fruit of autumn olive: a rich source of lycopene. HortScience 2001; 36(6): 1136-1137. https://doi.org/10.21273/HORTSCI.36.6.1136
- Ishaq S, Rathore HA, Sabir SM, Maroof MS. Antioxidant properties of Elaeagnus umbellata berry solvent extracts against lipid peroxidation in mice brain and liver tissues. Food Sci Biotechnol 2015; 24(2): 673-679. https://doi.org/10.1007/s10068-015-0088-x
- Khattak KF. Free radical scavenging activity, phytochemical composition and nutrient analysis of Elaeagnus umbellata berry. J Med Plants Res 2012; 6(39): 5196-5203. https://doi.org/10.5897/JMPR11.1128
- Zglinska K, Niemiec T, Lozicki A, Matusiewicz M, Szczepaniak J, Puppel K, et al. Effect of Elaeagnus umbellata (Thunb.) fruit extract on H2O2-induced oxidative and inflammatory responses in normal fibroblast cells. PeerJ 2021; 9: e10760.
- Kim JI, Baek HJ, Han DW, Yun JA. Autumn olive (Elaeagnus umbellata Thunb.) berry reduces fasting and postprandial glucose levels in mice. Nutr Res Pract 2019; 13(1): 11-16. https://doi.org/10.4162/nrp.2019.13.1.11
- Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7): 412-419. https://doi.org/10.1007/BF00280883
- Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226(1): 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
- Teff KL, Grudziak J, Townsend RR, Dunn TN, Grant RW, Adams SH, et al. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. J Clin Endocrinol Metab 2009; 94(5): 1562-1569. https://doi.org/10.1210/jc.2008-2192
- Reddy SS, Ramatholisamma P, Karuna R, Saralakumari D. Preventive effect of Tinospora cordifolia against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats. Food Chem Toxicol 2009; 47(9): 2224-2229. https://doi.org/10.1016/j.fct.2009.06.008
- Mohamed MA, Ahmed MA, Abd Elbast SA, Ali NA. Rice bran oil ameliorates hepatic insulin resistance by improving insulin signaling in fructose fed-rats. J Diabetes Metab Disord 2019; 18(1): 89-97. https://doi.org/10.1007/s40200-019-00394-2
- Dziadek K, Kopec A, Piatkowska E, Leszczynska T. High-fructose diet-induced metabolic disorders were counteracted by the intake of fruit and leaves of sweet cherry in Wistar rats. Nutrients 2019; 11(11): 2638.
- Viskelis P, Rubinskiene M, Jasutiene I, Sarkinas A, Daubaras R, Cesoniene L. Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes. J Food Sci 2009; 74(2): C157-C161. https://doi.org/10.1111/j.1750-3841.2009.01066.x
- Rodrigues CA, Nicacio AE, Boeing JS, Garcia FP, Nakamura CV, Visentainer JV, et al. Rapid extraction method followed by a d-SPE clean-up step for determination of phenolic composition and antioxidant and antiproliferative activities from berry fruits. Food Chem 2020; 309: 125694.
- Williamson G, Sheedy K. Effects of polyphenols on insulin resistance. Nutrients 2020; 12(10): 3135.
- Hassan NF, Hassan AH, El-Ansary MR. Cytokine modulation by etanercept ameliorates metabolic syndrome and its related complications induced in rats administered a high-fat high-fructose diet. Sci Rep 2022; 12(1): 20227.
- Jiang L, Yao L, Yang Y, Ke D, Batey R, Wang J, et al. Jiangzhi Capsule improves fructose-induced insulin resistance in rats: association with repair of the impaired sarcolemmal glucose transporter-4 recycling. J Ethnopharmacol 2016; 194: 288-298. https://doi.org/10.1016/j.jep.2016.09.009
- Ichigo Y, Takeshita A, Hibino M, Nakagawa T, Hayakawa T, Patel D, et al. High-fructose diet-induced hypertriglyceridemia is associated with enhanced hepatic expression of ACAT2 in rats. Physiol Res 2019; 68(6): 1021-1026. https://doi.org/10.33549/physiolres.934226
- Wong VW, Wong GL, Yeung JC, Fung CY, Chan JK, Chang ZH, et al. Long-term clinical outcomes after fatty liver screening in patients undergoing coronary angiogram: a prospective cohort study. Hepatology 2016; 63(3): 754-763. https://doi.org/10.1002/hep.28253
- Nazir N, Zahoor M, Nisar M, Khan I, Karim N, Abdel-Halim H, et al. Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) in streptozotocin-induced diabetic rats: pharmacological and computational approach. BMC Complement Altern Med 2018; 18(1): 332.
- Sattar N, Forrest E, Preiss D. Non-alcoholic fatty liver disease. BMJ 2014; 349: g4596.
- Kim J, Nam KS, Noh SK. Cherry silverberry (Elaeagnus multiflora) wine mitigates the development of alcoholic fatty liver in rats. J Korean Soc Food Sci Nutr 2012; 41(1): 57-64. https://doi.org/10.3746/jkfn.2012.41.1.057
- Iftikhar N, Hussain AI, Chatha SA, Sultana N, Rathore HA. Effects of polyphenol-rich traditional herbal teas on obesity and oxidative stress in rats fed a high-fat-sugar diet. Food Sci Nutr 2022; 10(3): 698-711. https://doi.org/10.1002/fsn3.2695
- Li W, Yang H, Zhao Q, Wang X, Zhang J, Zhao X. Polyphenol-rich loquat fruit extract prevents fructose-induced nonalcoholic fatty liver disease by modulating glycometabolism, lipometabolism, oxidative stress, inflammation, intestinal barrier, and gut microbiota in mice. J Agric Food Chem 2019; 67(27): 7726-7737. https://doi.org/10.1021/acs.jafc.9b02523
- Miyazaki M, Dobrzyn A, Man WC, Chu K, Sampath H, Kim HJ, et al. Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J Biol Chem 2004; 279(24): 25164-25171. https://doi.org/10.1074/jbc.M402781200
- Fenni S, Hammou H, Astier J, Bonnet L, Karkeni E, Couturier C, et al. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol Nutr Food Res 2017; 61(9): 1601083.
- Mannino F, Pallio G, Altavilla D, Squadrito F, Vermiglio G, Bitto A, et al. Atherosclerosis plaque reduction by lycopene is mediated by increased energy expenditure through AMPK and PPARα in ApoE KO mice fed with a high fat diet. Biomolecules 2022; 12(7): 973.