Acknowledgement
This study was supported by Basic Science Research Program Grant (NRF2021R1F1A1050949) provided by the National Research Foundation of Korea (NRF), which is funded by the Ministry of Science, ICT and Future Planning and supported by 2023 Eulji University Innovation Support Project grant funded.
References
- Savitz DA, Elston B, Bobb JF, Clougherty JE, Dominici F, Ito K, et al. Ambient fine particulate matter, nitrogen dioxide, and hypertensive disorders of pregnancy in New York City. Epidemiology 2015; 26(5): 748-757. https://doi.org/10.1097/EDE.0000000000000349
- Kim KE, Cho D, Park HJ. Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci 2016; 152: 126-134. https://doi.org/10.1016/j.lfs.2016.03.039
- Lundgren DA, Hlaing DN, Rich TA, Marple VA. PM10/PM2.5/PM1 data from a trichotomous sampler. Aerosol Sci Technol 1996; 25(3): 353-357. https://doi.org/10.1080/02786829608965401
- Song SH, Paek D, Lee YM, Lee CW, Park CH, Yu SD. Ambient fine and ultrafine particle measurements and their correlations with particulate PAHs at an elementary school near a highway. Asian J Atmos Environ 2012; 6(2): 96-103. https://doi.org/10.5572/ajae.2012.6.2.096
- Pilkington SM, Bulfone-Paus S, Griffiths CE, Watson RE. Inflammaging and the skin. J Invest Dermatol 2021; 141(4): 1087-1095. https://doi.org/10.1016/j.jid.2020.11.006
- Lee YI, Choi S, Roh WS, Lee JH, Kim TG. Cellular senescence and inflammaging in the skin microenvironment. Int J Mol Sci 2021; 22(8): 3849.
- Dooms-Goossens AE, Debusschere KM, Gevers DM, Dupre KM, Degreef HJ, Loncke JP, et al. Contact dermatitis caused by airborne agents. A review and case reports. J Am Acad Dermatol 1986; 15(1): 1-10. https://doi.org/10.1016/S0190-9622(86)70135-7
- Jeong SC, Shin CY, Song MK, Cho Y, Ryu JC. Gene expression profiling of human alveolar epithelial cells (A549 cells) exposed to atmospheric particulate matter 2.5 (PM2.5) collected from Seoul, Korea. Mol Cell Toxicol 2014; 10(4): 361-368.
- Charoud-Got J, Emma G, Seghers J, Tumba-Tshilumba MF, Santoro A, Held A, et al. Preparation of a PM2.5-like reference material in sufficient quantities for accurate monitoring of anions and cations in fine atmospheric dust. Anal Bioanal Chem 2017; 409(30): 7121-7131. https://doi.org/10.1007/s00216-017-0670-6
- Fernando IP, Kim HS, Sanjeewa KK, Oh JY, Jeon YJ, Lee WW. Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae. Algae 2017; 32(3): 261-273. https://doi.org/10.4490/algae.2017.32.8.14
- Sarialtin SY, Acikara OB. Assessment of correlation analysis, phytochemical profile, and biological activities of endemic Scorzonera species from Turkey. Chem Biodivers 2022; 19(10): e202200007.
- Na EJ, Jang HH, Kim GR. Review of recent studies and research analysis for anti-oxidant and anti-aging materials. Asian J Beauty Cosmetol 2016; 14(4): 481-491. https://doi.org/10.20402/ajbc.2016.0107
- Atoui AK, Mansouri A, Boskou G, Kefalas P. Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chem 2005; 89(1): 27-36. https://doi.org/10.1016/j.foodchem.2004.01.075
- Ambati RR, Phang SM, Ravi S, Aswathanarayana RG. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review. Mar Drugs 2014; 12(1): 128-152. https://doi.org/10.3390/md12010128
- Lee JH, Yun CW, Hur J, Lee SH. Fucoidan rescues p-cresol-induced cellular senescence in mesenchymal stem cells via FAK-Akt-TWIST axis. Mar Drugs 2018; 16(4): 121.
- Alara OR, Abdurahman NH, Ukaegbu CI. Extraction of phenolic compounds: a review. Curr Res Food Sci 2021; 4: 200-214. https://doi.org/10.1016/j.crfs.2021.03.011
- Giampieri F, Alvarez-Suarez JM, Machi M, Cianciosi D, Navarro-Hortal MD, Battino M. Edible insects: a novel nutritious, functional, and safe food alternative. Food Frontiers 2022; 3(3): 358-365. https://doi.org/10.1002/fft2.167
- Kourimska L, Adamkova A. Nutritional and sensory quality of edible insects. NFS Journal 2016; 4: 22-26. https://doi.org/10.1016/j.nfs.2016.07.001
- Aiello D, Barbera M, Bongiorno D, Cammarata M, Censi V, Indelicato S, et al. Edible insects an alternative nutritional source of bioactive compounds: a review. Molecules 2023; 28(2): 699.
- Di Mattia C, Battista N, Sacchetti G, Serafini M. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Front Nutr 2019; 6: 106.
- Nino MC, Reddivari L, Osorio C, Kaplan I, Liceaga AM. Insects as a source of phenolic compounds and potential health benefits. J Insects Food Feed 2021; 7(7): 1077-1087. https://doi.org/10.3920/JIFF2020.0113
- Hee Sun C, Su Yeon K, Sung Ryun C, Hyeon Il P, Ji Eun B, Ji Su K, et al. Characteristics of quality and antioxidant activation of the cookies adding with mealworm (Tenebrio molitor) and black bean powder. J Food Hyg Saf 2017; 32(6): 521-530. https://doi.org/10.13103/JFHS.2017.32.6.521
- Lim HJ, Byun EH. Evaluation of anti-cancer activity of Gryllus bimaculatus water extract on non-small cancer lung cell via apoptosis. Prev Nutr Food Sci 2021; 26(4): 453-458. https://doi.org/10.3746/pnf.2021.26.4.453
- Han JS. Nutritional value and anti-inflammation activity of misutkaru with added Gryllus bimaculatus powder. Asian J Beauty Cosmetol 2021; 19(3): 467-476. https://doi.org/10.20402/ajbc.2021.0203
- Ahn MY, Hwang JS, Yun EY, Kim MJ, Park KK. Anti-aging effect and gene expression profiling of aged rats treated with G. bimaculatus extract. Toxicol Res 2015; 31(2): 173-180. https://doi.org/10.5487/TR.2015.31.2.173
- Hwang BB, Chang MH, Lee JH, Heo W, Kim JK, Pan JH, et al. The edible insect Gryllus bimaculatus protects against gut-derived inflammatory responses and liver damage in mice after acute alcohol exposure. Nutrients 2019; 11(4): 857.
- Kim SH, Kim Y, Han JS. Antioxidant activities and nutritional components of cricket (Gryllus bimaculatus) powder and protein extract. Asian J Beauty Cosmetol 2020; 18(2): 163-172. https://doi.org/10.20402/ajbc.2020.0016
- Cho KA, Ryu SJ, Oh YS, Park JH, Lee JW, Kim HP, et al. Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem 2004; 279(40): 42270-42278. https://doi.org/10.1074/jbc.M402352200
- Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 1991; 51(10): 2515-2520.
- Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, Chen W, Knapp W, Zlabinger GJ. A microplate assay for the detection of oxidative products using 2',7'-dichlorofluorescin-diacetate. J Immunol Methods 1992; 156(1): 39-45. https://doi.org/10.1016/0022-1759(92)90008-H
- Satoh M, Nagasu H, Morita Y, Yamaguchi TP, Kanwar YS, Kashihara N. Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling. Am J Physiol Renal Physiol 2012; 303(12): F1641-F1651. https://doi.org/10.1152/ajprenal.00460.2012
- Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 2009; 8(1): 18-30. https://doi.org/10.1016/j.arr.2008.07.002
- Kim J, Kim EH, Oh I, Jung K, Han Y, Cheong HK, et al. Symptoms of atopic dermatitis are influenced by outdoor air pollution. J Allergy Clin Immunol 2013; 132(2): 495-8.e1. https://doi.org/10.1016/j.jaci.2013.04.019
- Huss-Marp J, Eberlein-Konig B, Breuer K, Mair S, Ansel A, Darsow U, et al. Influence of short-term exposure to airborne Der p 1 and volatile organic compounds on skin barrier function and dermal blood flow in patients with atopic eczema and healthy individuals. Clin Exp Allergy 2006; 36(3): 338-345. https://doi.org/10.1111/j.1365-2222.2006.02448.x
- Vierkotter A, Krutmann J. Environmental influences on skin aging and ethnic-specific manifestations. Dermatoendocrinol 2012; 4(3): 227-231. https://doi.org/10.4161/derm.19858
- Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, et al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2005; 2(1): 10.
- Piao MJ, Ahn MJ, Kang KA, Ryu YS, Hyun YJ, Shilnikova K, et al. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol 2018; 92(6): 2077-2091. https://doi.org/10.1007/s00204-018-2197-9
- Farah MA, Ali MA, Chen SM, Li Y, Al-Hemaid FM, Abou-Tarboush FM, et al. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf B Biointerfaces 2016; 141: 158-169. https://doi.org/10.1016/j.colsurfb.2016.01.027
- Wei H, Feng Y, Liang F, Cheng W, Wu X, Zhou R, et al. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter. Toxicology 2017; 380: 94-103. https://doi.org/10.1016/j.tox.2017.01.017
- Larsen CG, Anderson AO, Oppenheim JJ, Matsushima K. Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumour necrosis factor. Immunology 1989; 68(1): 31-36.
- Amaro-Ortiz A, Yan B, D'Orazio JA. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules 2014; 19(5): 6202-6219. https://doi.org/10.3390/molecules19056202
- Jin SP, Li Z, Choi EK, Lee S, Kim YK, Seo EY, et al. Urban particulate matter in air pollution penetrates into the barrier-disrupted skin and produces ROS-dependent cutaneous inflammatory response in vivo. J Dermatol Sci 2018; 91(2): 175-183. https://doi.org/10.1016/j.jdermsci.2018.04.015
- Park SY, Byun EJ, Lee JD, Kim S, Kim HS. Air pollution, autophagy, and skin aging: impact of particulate matter (PM10) on human dermal fibroblasts. Int J Mol Sci 2018; 19(9): 2727.
- Kim M, Kim JH, Jeong GJ, Park KY, Lee MK, Seo SJ. Particulate matter induces pro-inflammatory cytokines via phosphorylation of p38 MAPK possibly leading to dermal inflammaging. Exp Dermatol 2019; 28(7): 809-815. https://doi.org/10.1111/exd.13943
- Cole MA, Quan T, Voorhees JJ, Fisher GJ. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal 2018; 12(1): 35-43. https://doi.org/10.1007/s12079-018-0459-1
- Roh E, Kim JE, Kwon JY, Park JS, Bode AM, Dong Z, et al. Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging. Crit Rev Food Sci Nutr 2017; 57(8): 1631-1637. https://doi.org/10.1080/10408398.2014.1003365
- Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, et al. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 2006; 168(6): 1861-1868. https://doi.org/10.2353/ajpath.2006.051302
- Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: targeting inflammation, wound healing, and photo-aging. Phytomedicine 2023; 115: 154824.
- Borg M, Brincat S, Camilleri G, Schembri-Wismayer P, Brincat M, Calleja-Agius J. The role of cytokines in skin aging. Climacteric 2013; 16(5): 514-521. https://doi.org/10.3109/13697137.2013.802303