DOI QR코드

DOI QR Code

Analysis of Ecological Space Connectivity and Forest axis in Daegu and Gyeongsangbuk-do

대구·경북 생태공간 연결성 및 산림축 분석

  • Jae-Gyu CHA (Division of Climate & Ecology, National Institute of Ecology)
  • 차재규 (국립생태원 기후생태연구실)
  • Received : 2023.10.11
  • Accepted : 2023.11.07
  • Published : 2023.12.31

Abstract

The expansion of human activities and road development has led to the loss and fragmentation of ecological spaces, which is a negative factor for biodiversity. In particular, urban areas where land use and land cover have rapidly changed into urbanization zones are regions where ecological spaces are lost and isolated, making it difficult for wildlife to inhabit. Furthermore, the loss and fragmentation of ecological spaces due to urbanization can have a negative impact on ecosystem services. Therefore, to enhance biodiversity and ecosystem services in urban and national land, it is necessary to establish a practical ecological axis that reflects the current status of the city. Thus, this study analyzed the connectivity of ecological spaces and forest axis that can be used for spatial planning related to urban ecological axis of local governments in Daegu and Gyeongsangbuk-do. The ecological connectivity was analyzed by dividing the Daegu-Gyeongbuk region into 31 local government units, distinguishing between forests and natural areas using land cover data. Subsequently, the study area was divided into 20,483 hexagonal grids of 1 square kilometer each, and the restoration effects for ecological fragmentation within 100 meters were spatially clustered to visualize priority restoration areas. The forest axis was derived by considering regional conditions such as land cover, building area, slope, and others to connect 1,534 forests of 100 hectares or more. The research results are expected to be used as fundamental data for spatial planning, goal setting, and the selection of restoration areas for improving ecological connectivity.

인간의 활동 영역과 도로의 확장으로 인한 생태공간의 손실과 단절은 생물다양성에 부정적 요소이다. 특히 토지의 이용과 피복이 급속하게 변한 도시의 시가화지역은 생태공간의 손실과 고립으로 야생생물의 서식이 어려운 지역이다. 또한 도시화에 따른 생태공간 손실과 단절은 생태계서비스에 부정적 영향을 미칠 수 있다. 그러므로 도시와 국토의 생물다양성 및 생태계서비스 증진을 위해 도시의 현황을 반영한 실용적 생태축 구축이 필요하다. 따라서 본 연구는 대구·경북권역 기초자치단체의 도시생태축 관련 공간계획 수립에 활용할 수 있는 생태공간의 연결성과 산림축을 분석하여 제시하였다. 생태공간 연결성은 대구·경북권역 31개 기초자치단체의 산림과 자연지역으로 구분하여 토지피복도를 활용하여 분석하였다. 그리고 대상지를 20,483개의 1km2 육각형 격자로 나누고 생태공간의 100m 이내 단절에 대한 복원 효과를 공간 군집화하여 복원 중점지역을 시각화하였다. 산림축은 100ha 이상 산림 1,534개를 연결하는 선형을 토지피복, 건축물 면적, 경사 등 지역 현황을 반영하여 도출하였다. 연구 결과는 생태공간의 연결성 개선을 위한 공간계획 및 목표 수립과 복원지역 선정의 기초자료로 활용할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립생태원의 지원을 받아 수행하였습니다(NIE-B-2021-37, NIE-B-2023-37).

References

  1. Aida, N., Sasidhran, S., Kamarudin, N., Aziz, N., Puan, C. L., and B. Azhar. 2016. Woody trees, green space and park size improve avian biodiversity in urban landscapes of Peninsular Malaysia. Ecological Indicators 69:176-183. https://doi.org/10.1016/j.ecolind.2016.04.025
  2. Almenar, J.B., Bolowich, A., Elliot, T., Geneletti, D., Sonnemann, G., and B. Rugani. 2019. Assessing habitat loss, fragmentation and ecological connectivity in Luxembourg to support spatial planning. Landscape and Urban Planning 189:335-351. https://doi.org/10.1016/j.landurbplan.2019.05.004
  3. Birch, C.P., Oom, S.P., and J.A. Beecham. 2007. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological modelling 206(3-4):347-359. https://doi.org/10.1016/j.ecolmodel.2007.03.041
  4. Burke, D., Elliott, K., Falk, K., and T. Piraino. 2011. A Land Manager's Guide to Conserving Habitat for Forest Birds in Southern Ontario. Ministry of Natural Resources. Ontario, Canada.
  5. Chan, L., Hillel, O., Elmqvist, T., Werner, P., Holman, N., Mader, A., and E. Calcaterra. 2014. User's manual on the Singapore index on cities'biodiversity (also known as the City Biodiversity Index). Singapore: National Parks Board, Singapore.
  6. Chan, L., Hillel, O., Werner, P., Holman, N., Coetzee, I., Galt, R., & T. Elmqvist. 2021. Handbook on the Singapore Index on Cities'Biodiversity (also known as the City Biodiversity Index). Montreal.=CBD Technical Series, 98.
  7. Didham, R.K. 2010. Ecological consequences of habitat fragmentation. Encyclopedia of life sciences 61:1-11. https://doi.org/10.1002/9780470015902.a0021904
  8. European Environment Agency. 2023. Landscape fragmentation in Europe. https://www.eea. europa.eu/data-and-maps/data/data-viewers/landscape-fragmentation-in-europe. (Accessed july 3, 2023).
  9. Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., and J.M. Briggs. 2008. Global change and the ecology of cities. science 319(5864):756-760. https://doi.org/10.1126/science.1150195
  10. Hagen, M., Kissling, W.D., Rasmussen, C., De Aguiar, M.A., Brown, L.E., Carstensen, D.W., and J.M. Olesen. 2012. Biodiversity, species interactions and ecological networks in a fragmented world. In Advances in ecological research 46:89-210. Academic Press. https://doi.org/10.1016/B978-0-12-396992-7.00002-2
  11. Hong, S.H., Choi, S.H., Lee, S.D., and J.H. Bae. 2009. Establishing Urban Green Network by Estimating Birds Moving Pattern. Journal of the Korean Association of Geographic Information Studies 12(2):99-110
  12. Jongman, R. H., Kulvik, M., and I. Kristiansen. 2004. European ecological networks and greenways. Landscape and urban planning 68(2-3):305-319. https://doi.org/10.1016/S0169-2046(03)00163-4
  13. Kang, W., and C.R. Park. 2015. Corridor and network analyses of forest bird habitats in a metropolitan area of South Korea. Korean Journal of Agricultural and Forest Meteorology 17(3):191-201 https://doi.org/10.5532/KJAFM.2015.17.3.191
  14. Kim, E.S., Lee, D.K., Yoon, E.J., and C.Y. Park. 2019. Exploration of Optimal urban green space using unused land-To improve green connectivity and thermal environment. Journal of the Korean Society of Environmental Restoration Technology 22(5):45-56 https://doi.org/10.13087/KOSERT.2019.22.5.45
  15. Kong, F., Yin, H., Nakagoshi, N., and Y. Zong. 2010. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landscape and urban planning 95(1-2):16-27. https://doi.org/10.1016/j.landurbplan.2009.11.001
  16. Korea Forest Service. 2021. 2020 Forest Basic Statistics
  17. Kwon, O.S., Kim, J.H., and J.H. Ra. 2021. Landscape ecological analysis of green network in urban area using circuit theory and least-cost path. Land 10(8):847.
  18. Loro, M., Ortega, E., Arce, R. M., and D. Geneletti. 2015. Ecological connectivity analysis to reduce the barrier effect of roads. An innovative graph-theory approach to define wildlife corridors with multiple paths and without bottlenecks. Landscape and urban planning 139:149-162. https://doi.org/10.1016/j.landurbplan.2015.03.006
  19. Mayor of London. 2023. Green Infrastructure Focus Map. https://apps.london.gov.uk/green-infrastructure/. (Accessed july 3, 2023).
  20. Ministry of Environment. 2008. Guidelines for the Establishment of Urban Ecological Axis.
  21. Ministry of Environment. 2021. Si.Gun.Gu Environmental Planning Guideline.
  22. Ministry of Environment. 2023. National Land Environmental Assessment Map. https://ecvam.neins.go.kr/main.do. (Accessed july 3, 2023).
  23. Mitchell, M.G., Suarez-Castro, A.F., Martinez-Harms, M., Maron, M., McAlpine, C., Gaston, K.J., and J.R. Rhodes. 2015. Reframing landscape fragmentation's effects on ecosystem services. Trends in ecology & evolution 30(4):190-198. https://doi.org/10.1016/j.tree.2015.01.011
  24. Nie, W., Shi, Y., Siaw, M. J., Yang, F., Wu, R., Wu, X., and Z. Bao. 2021. Constructing and optimizing ecological network at county and town Scale: The case of Anji County, China. Ecological Indicators 132:108294.
  25. Pelletier, D., Clark, M., Anderson, M.G., Rayfield, B., Wulder. M.A., and J.A. Cardille. 2014. Applying circuit theory for corridor expansion and management at regional scales: tiling, pinch points, and omnidirectional connectivity. PLoS One 9(1):e84135.
  26. Qi, Z.F., Ye, X.Y., Zhang, H., and Z.L. Yu. 2014. Land fragmentation and variation of ecosystem services in the context of rapid urbanization: The case of Taizhou city, China. Stochastic environmental research and risk assessment 28:843-855. https://doi.org/10.1007/s00477-013-0721-2
  27. Ribeiro, M.P., de Mello, K., and R.A. Valente. 2022. How can forest fragments support protected areas connectivity in an urban landscape in Brazil?. Urban Forestry & Urban Greening 74:127683.
  28. Shi, F., Liu, S., Sun, Y., An, Y., Zhao, S., Liu, Y., and M. Li. 2020. Ecological network construction of the heterogeneous agro-pastoral areas in the upper Yellow River basin. Agriculture, Ecosystems & Environment 302:107069.
  29. United States Environmental Protection Agency(EPA). 2023. Ecological Connectivity. https://cfpub.epa.gov/roe/indicator.cfm?i=80. (Accessed july 3, 2023).
  30. Yoon, E.J., KIM, J., and D.K. Lee. 2019. Connectivity Assessment Based on Circuit Theory for Suggestion of Ecological Corridor. Journal of Environmental Impact Assessment 28(3):275-286. https://doi.org/10.14249/EIA.2019.28.3.275
  31. Zhou, D., Lin, Z., Ma, S., Qi, J., and T. Yan. 2021. Assessing an ecological security network for a rapid urbanization region in Eastern China. Land Degradation & Development 32(8):2642-2660. https://doi.org/10.1002/ldr.3932