과제정보
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03048004). This work was supported by the GRRC program of Gyeonggi province. (GRRC KYUNGHEE2023-B01), Development of ultra-fine process materials based on the sub-nanometer class for the next-generation semiconductors]. This work was supported by the Korea Basic Science Institute (KBSI) National Research Facilities & Equipment Center (NFEC) grant funded by the Korea government (Ministry of Education). (No.2020R1A6C103B085 & No. 2019R1A6C1010052).
참고문헌
- E. Mondal, W.-Y. Hung, H.-C. Dai, and K.-T. Wong, Fluorene-based asymmetric bipolar universal hosts for white organic light emitting devices, Adv. Funct. Mater., 23, 3096-3105 (2013). https://doi.org/10.1002/adfm.201202889
- H. D. Pham, L. Xianqiang, W. Li, S. Manzhos, A. K. K. Kyaw, and P. Sonar, Organic interfacial materials for perovskite-based optoelectronic devices, Energy Environ. Sci., 12, 1177-1209 (2019). https://doi.org/10.1039/C8EE02744G
- X. Xu, L. Yu, Q Peng, Recent Avances in Wide Bandgap Polymer Donors and Their Applications in Organic Solar Cells, Chin. J. Chem., 39, 24-254 (2021).
- H. M. Heitzer, T. J. Marks, and M. A. Ratner, Molecular donor-bridge-acceptor strategies for high-capacitance organic dielectric materials, J. Am. Chem. Soc., 137, 7189-7196 (2015). https://doi.org/10.1021/jacs.5b03301
- B. Lu, Y. Huang, Z. Zhang, H. Quan, and Y. Yao, Organic conjugated small molecules with donor-acceptor structures: Design and application in the phototherapy of tumors, Mater. Chem. Front., 6, 2968-2993 (2022). https://doi.org/10.1039/D2QM00752E
- Y. Li, J.-Y. Liu, Y.-D. Zhao, and Y.-C. Cao, Recent advancements of high efficient donor-acceptor type blue small molecule aapplied for OLEDs, Mater. Today., 20, 258-266 (2017). https://doi.org/10.1016/j.mattod.2016.12.003
- T. Yang, Z. Cheng, Z. Li, J. Liang, Y. Xu, C. Li, and Y. Wang, Improving the efficiency of red thermally activated delayed fluorescence organic light-emitting diode by rational isomer engineering, Adv. Funct. Mater., 30, 2002681 (2020).
- T. C. Yiu, P. Gnanasekaran, W.-L. Chen, W.-H. Lin, M.-J. Lin, D.-Y. Wang, C.-W. Lu, C.-H. Chang, and Y. J. Chang, Multifaceted sulfone-carbazole-based D-A-D materials: A blue fluorescent emitter as a host for phosphorescent OLEDs and triplet -triplet annihilation up-conversion electroluminescence, ACS Appl. Mater. Interfaces, 15, 1748-1761 (2023). https://doi.org/10.1021/acsami.2c21294
- L. Xue, J. He, X. Gu, Z. Yang, B. Xu, and W. Tian, Efficient bulk-heterojunction solar cells based on a symmetrical D-Π-A-Π -D organic dye molecule, J. Phys. Chem. C, 113, 12911-12917 (2009). https://doi.org/10.1021/jp902976w
- K. H. Choi, J. M. Kim, W. J. Chung, and J. Y. Lee, Effects of substitution position of carbazole-dibenzofuran based high triplet energy hosts to device stability of blue phosphorescent organic light-emitting diodes, Molecules, 26, 2804 (2021).
- J. Lee, K. Shizu, H. Tanaka, H. Nomura, T. Yasuda, and C. Adachi, Oxadiazole-and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes, J. Mater. Chem. C, 1, 4599-4604 (2013). https://doi.org/10.1039/c3tc30699b
- Y. Li, X.-L. Li, D. Chen, X. Cai, G. Xie, Z. He, Y.-C. Wu, A. Lien, Y. Cao, and S.-J. Su, Design strategy of blue and yellow thermally activated delayed fluorescence emitters and their all-fluorescence white OLEDs with external quantum efficiency beyond 20%, Adv. Funct. Mater., 26, 6904-6912 (2016). https://doi.org/10.1002/adfm.201602507
- L. K. Noda and N. S. Goncalves, Assignment of the electronic transition of phenothiazine radical cation in the visible regione a resonance Raman spectroscopy and theoretical calculation investigation, J. Mol. Struct., 1191, 253-258 (2019). https://doi.org/10.1016/j.molstruc.2019.04.053
- Z. Li, W. Li, C. Keum, E. Archer, B. Zhao, A. M. Z. Slawin, W. Huang, M. C. Gather, I. D. W. Samuel, and E. Zysman-Colman, 1,3,4-oxadiazole-based deep blue thermally activated delayed fluorescence emitters for organic light emitting diodes, J. Phys. Chem. C, 123, 24772-24785 (2019). https://doi.org/10.1021/acs.jpcc.9b08479
- S. Xiang, R. Guo, Z. Huang, X. Lv, S. Sun, H. Chen, Q. Zhang, and L. Wang, Highly efficient yellow nondoped thermally activated delayed fluorescence OLEDs by utilizing energy transfer between dual conformations based on phenothiazine derivatives, Dyes Pigm., 170, 107636 (2019).
- S. Xiang, Z. Huang, S. Sun, X. Lv, L. Fan, S. Ye, H. Chen, R. Guo, and L. Wang, Highly efficient non-doped OLEDs using aggregation-induced delayed fluorescence materials based on 10-phenyl-10H-phenothiazine 5,5-dioxide derivatives, J. Mater. Chem. C, 6, 11436-11443 (2018). https://doi.org/10.1039/C8TC03648A
- X.-H. Zhang, S. H. Kim, I. S. Lee, C. J. Gao, S. I. Yang, and K. H. Ahn, Synthesis, photophysical and electrochemical properties of novel conjugated donor-acceptor molecules based on phenothiazine and benzimidazole, Bull. Korean Chem. Soc., 28, 1389-1395 (2007). https://doi.org/10.5012/bkcs.2007.28.8.1389
- R. Sreenivasulu, M. B. Tej, S. S. Jadav, P. Sujitha, C. G. Kumar, and R. R. Raju, Synthesis, anticancer evaluation and molecular docking studies of 2,5-bis(indolyl)-1,3,4-oxadiazoles, Nortopsentin analogues, J. Mol. Struct., 1208, 127875 (2020).
- H. Shen, Y. Li, and Y. Li, Self-assembly and tunable optical properties of intramolecular charge transfer molecules, Aggregate, 1, 57-68 (2020). https://doi.org/10.1002/agt2.6
- V. Gopia, S. Subbiahraja, K. Chemmanghattu, P. C. Ramamurthy, 2,3-di(2-furyl) quinoxaline bearing 3 -ethyl rhodanine and 1,3 indandione based heteroaromatic conjugated T-shaped push -pull chromophores: Design, synthesis, photophysical and non-linear optical investigations, Dyes Pigm., 173, 107887 (2020).
- Y. Zhang, Y. Wang, C. Gao, Z. Ni, X. Zhang, W. Hude, and H. Dong, Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications, Chem. Soc. Rev., 52, 1331 (2023).
- H. M. Diab, A. M. Abdelmoniem, M. R. Shaaban, I. A. Abdelhamid, and A. H. M. Elwahy, An overview on synthetic strategies for the construction of star-shaped molecules, RSC Adv., 9, 16606 (2019).
- M. L. Wilde, J. Menz, C. LEder, and K. Kummerer, Combination of experimental and in silico methods for the assessment of the phototransformation products of the antipsychotic drug/metabolite Mesoridazine, Sci. Total Environ., 618, 697-711 (2018). https://doi.org/10.1016/j.scitotenv.2017.08.040
- Y.Yu, Z.Yu, Z.Ma, J. Jiang, and D. Hu, D-π-A-π-D-type Fluorophores based on Pyridal[2,1,3]thiadiazole acceptor with hybridized local and charge-transfer excited-state for high-efficiency OLEDs, Dyes Pigm., 208, 110868. (2022).
- M. Soroceanu, C.-P. Constantin, and M.-D. Damaceanu, A straightforward synthetic strategy towards conjugated donor-acceptor naphthylimido-azomethines with tunable films morphologies and opto-electronic properties, Prog. Org. Coat., 166, 106785 (2022).
- S. Sasaki, G. P. C. Drummen, and G. I. Konishi, Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry, J. Mater. Chem. C, 4, 2731-2743 (2016). https://doi.org/10.1039/C5TC03933A
- N. J. Turro, V. Ramamurthy, and J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules, 127, University Science Books, Sausalito (California), USA (2010).
- C. Wang, W. Chi, Q. Qiao, D. Tan, Z. Xu, and X. Liu, Twisted intramolecular charge transfer (TICT) and twists beyond TICT: From mechanisms to rational designs of bright and sensitive fluorophores, Chem. Soc. Rev., 50, 12656-12678 (2021). https://doi.org/10.1039/D1CS00239B
- M. Sun, T. Li, M. Xie, H. Zhou, Q. Sun, D. Liu, Y. Pan, S. Zhang, W. Yang, and S. Xue, Highly efficient deep-blue electrofluorescence with optimized excited state composition and "hot-exciton" channel, Dyes Pigm., 210, 111002 (2023).
- J. Kumsampao, C. Chaiwai, C. Sukpattanacharoen, P. Nalaoh, T. Chawanpunyawat, P. Chasing, S. Namuangruk, N. Kungwan, T. Sudyoadsuk, and V. Promarak, Solid-state fluorophores with combined excited-state intramolecular proton transfer-aggregation-induced emission as efficient emitters for electroluminescent devices, Adv. Photonics Res., 3, 2100141 (2022).
- B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, 2nd ed., 53, John Wiley & Sons, Weinheim, Germany (2012).
- X. Xiang, Y. Zhan, W. Yang, and F. Jin, Aggregation-induced emission and distinct mechanochromic luminescence based on symmetrical D-A-D type and unsymmetrical D-A type carbazole functionalized dicyanovinyl derivatives, J. Lumin., 252, 119287 (2022).
- H. Liu, S. Yan, R. Huang, Z. Gao, G. Wang, L. Ding, Y. Fang, Single-benzene-based solvatochromic chromophores: color-tunable and bright fluorescence in the solid and solution states, Chem. Eur. J., 25, 16732-16739 (2019). https://doi.org/10.1002/chem.201904478
- M.-L. Hebestreit, H. Lartian, C. Henrichs, R. Kuhnemuth, W. L. Meerts, and M. Schmitt, Excited state dipole moments and lifetimes of 2-cyanoindole from rotationally resolved electronic Stark spectroscopy, Phys. Chem. Chem. Phys., 23, 10196-10204 (2021). https://doi.org/10.1039/D1CP00097G
- C.-H. Chen, Y. Wang, T. Michinobu, S.-W. Chang, Y.-C. Chiu, C.-Y. Ke, and G.-S. Liou, Donor-acceptor effect of carbazole-based conjugated polymer electrets on photoresponsive flash organic field-effect transistor memories, ACS Appl. Mater. Interfaces, 12, 6144-6150 (2020). https://doi.org/10.1021/acsami.9b20960
- D. Kim, Y. J. Lee, D.-H. Ahn, J.-W. Song, J. Seo, and H. Lee, Peptoid-conjugated magnetic field-sensitive exciplex system at high and low solvent polarities, J. Phys. Chem. Lett., 11, 4668-4677 (2020). https://doi.org/10.1021/acs.jpclett.0c00636
- M. Poddar, A. Cesaretti, E. Ferraguzzi, B. Carlotti, and R. Misra, Singlet and triplet excited-state dynamics of 3,7-bis(arylethynyl) phenothiazines: intramolecular charge transfer and reverse intersystem crossing, J. Phys. Chem. C, 124, 17864-17878 (2020). https://doi.org/10.1021/acs.jpcc.0c01786