DOI QR코드

DOI QR Code

Extraction and Characterization of Aloe Glucomannan: Assessing Its Flocculation Capability

  • Hye Mi Kwon (Department of Biotech & Bioengineering, Kangwon National University) ;
  • Shin Young Lee (Department of Biotech & Bioengineering, Kangwon National University) ;
  • Won Hur (Department of Biotech & Bioengineering, Kangwon National University)
  • 투고 : 2023.08.16
  • 심사 : 2023.10.09
  • 발행 : 2023.12.10

초록

Acemannan, a highly acetylated glucomannan, was extracted from fresh Aloe vera leaves by ethanol fractionation, resulting in a concentration increase of more than threefold. The presence of acemannan was confirmed using FTIR and 1H NMR analysis, revealing an average molecular weight of 780 kDa. The flocculating activity of the fractionated aloe gel polysaccharide was assessed through settling tests in a 1% (w/v) bentonite suspension. The results demonstrated that the aloe polysaccharide exhibited remarkable stability within a temperature range of 20~70 ℃. The maximal flocculation rate at different pH levels ranged from 93% to 97%, with an optimal dose for maximum flocculation rate between 0.25 mg/mL. Notably, the minimum dose required for flocculation was achieved at a pH of 3, attributed to the compression of electrostatic repulsion on the surface of bentonite particles. However, the flocs obtained under acidic conditions were less dense and compact, exhibiting lower sedimentation velocity compared to those formed under neutral and alkaline pH conditions. Additionally, the addition of salt showed a slight synergistic effect on flocculation, significantly enhancing the sedimentation velocity. This investigation highlights the potential of Aloe vera polysaccharide as a natural and edible flocculant, offering promising applications in various industries.

키워드

참고문헌

  1. J. R. Rodriguez, J. D. Martin, and C. D. Romero, Aloe vera as a functional ingredient in foods, Crit. Rev. Food Sci. Nutr., 50, 305-326 (2010).  https://doi.org/10.1080/10408390802544454
  2. G. D. Sierra-Garcia, R. Castro-Rios, A. Gonzalez-Horta, J. Lara-Arias, and A. Chavez-Montes, Acemannan, an extracted polysaccharide from Aloe vera: A literature review, Nat. Prod. Commun., 9, 1217-1221 (2014). 
  3. R. P. Singh, S. Pal, S. Krishnamoorthy, P. Adhikary, and S. A. Ali, High-technology materials based on modified polysaccharides, Pure Appl. Chem., 81, 525-547 (2009).  https://doi.org/10.1351/PAC-CON-08-08-17
  4. A. K. Singh, S. Mohapatra, and B. Pani, Corrosion inhibition effect of Aloe Vera gel: Gravimetric and electrochemical study, J. Ind. Eng. Chem., 33, 288-297 (2016).  https://doi.org/10.1016/j.jiec.2015.10.014
  5. S. Y. Lee, B. J. Min, and T. S. Kang, Flocculating activity of the mucilage extracted from Aloe vera Linne, KSBB J., 13, 540-546 (1998). 
  6. H. M. Kwon, W. Hur, and S. Y. Lee, An in situ quality estimation of raw Aloe vera gel by using flocculation property of bentonite suspension, Food Eng. Prog., 18, 146-153 (2014).  https://doi.org/10.13050/foodengprog.2014.18.2.146
  7. N. Yewegnon, S. Philippe, A. Abdoukarim, Y. Abdou, K. Alassane, D. Pascal Agbangnan D., D. Mama, S. Koko, and C. Dominique, Evaluation of Aloe vera leaf gel as a natural flocculant: phytochemical screening and turbidity removal trials of water by coagulation flocculation, Res. J. Rec. Sci., 4. 1-9 (2016). 
  8. A. Benalia, K. Derbal, A. Khalfaoui, R. Bouchareb, A. Panico, C. Gisonni, G. Crispino, F. Pirozzi, and A. Pizzi, Use of Aloe vera as an organic coagulant for Improving drinking water quality, Water 13, 1-15 (2021). 
  9. A. Benalia, K. Derbal, A. Khalfaoui, A. Pizzi, and G. Medjahd, The use of Aloe vera as natural coagulant in Algerian drinking water treatment plant, J. Renew. Mater., 10, 625-637 (2022).  https://doi.org/10.32604/jrm.2022.017848
  10. R. L. Chu, S. Vasanthi, and S. Anurita, Aloe vera as a natural flocculant for palm oil mill effluent (POME) treatment - characterisation and optimisation studies, IOP Conf. Ser.: Mater. Sci. Eng., 1195-1218 (2021). 
  11. K. M. Katubi, A. Amari, H. N. Harharah, M. M. Eldirderi, M. A. Tahoon, and F. B. Rebah, Aloe vera as promising material for water treatment: A review, Processes, 9, 782 (2021). 
  12. A. R. Eberendu, G. Luta, J. A. Edwards, B. H. McAnalley, and B. Davis, Quantitative colorimetric analysis of aloe polysaccharides as a measure of Aloe vera quality in commercial products, J. AOAC Int., 88, 684-691 (2005).  https://doi.org/10.1093/jaoac/88.3.684
  13. S. Hestrin, The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application, J. Biol. Chem., 180, 249-261 (1949).  https://doi.org/10.1016/S0021-9258(18)56740-5
  14. J. Y. Wu, and H. F. Ye, Characterization and flocculating properties of an extracellular biopolymer produced from a Bacillus subtilis DYU1 isolate, Process Biochem., 42, 114-123 (2007).
  15. H. Yokoi, T. Arima, S. Hayashi, and Y. Takasaki, Flocculation properties of poly (gamma-glutamic acid) produced by Bacillus subtilis, J. Fermen. Bioeng., 82, 84-87 (1996).  https://doi.org/10.1016/0922-338X(96)89461-X
  16. Z. Yang, B. Yuan, X. Huang, J. Zhou, J. Cai, H. Yang, A. Li, and R. Cheng, Evaluation of the flocculation performance of carboxymethyl chotosan-grafted- polyacrylamicde, a novel ampheroteric chemically bonded composite flocculant, Water Res., 46, 107-114 (2012).  https://doi.org/10.1016/j.watres.2011.10.024
  17. M. R. Poirier, Evaluation of flocculation and filtration procedures applied to WSRC Sludge: A report from B. Yarar, Colorado School of Mines, WSRC-TR-2001-00213 (2001). 
  18. L. Wang, F. Ma, Y. Qu, D. Sun, A. Li, J. Guo, and B Yu, Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6, World J. Microb. Biot., 27, 559-2565 (2011). https://doi.org/10.1007/s11274-011-0726-2
  19. E. Tombacz and M Szekeres, Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes, Appl. Clay Sci., 27, 75-94 (2004).  https://doi.org/10.1016/j.clay.2004.01.001
  20. A. K. Mandal, K. K. Yadav, I. K. Sen, A. Kumar, S. Chakraborti, S. S. Islam, and R. Chakraborty, Partial characterization and flocculation behavior of an exopolysaccharide produced in nutrientpoor medium by a facultative oligotroph Klebsiella sp. PB12, J. Biosci. Bioeng., 115, 76-81 (2013).  https://doi.org/10.1016/j.jbiosc.2012.08.006
  21. J. H. Yim, S. J. Kim, S. H. Ahn, and H. K. Lee, Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03, Bioresource Technol., 98, 361-367 (2007).  https://doi.org/10.1016/j.biortech.2005.12.021
  22. A. S. Michaels and J. C. Bolger, Particle interactions in aqueous kaolinite dispersions, Ind. Eng. Chem. Fund., 3, 14-20 (1964).  https://doi.org/10.1021/i160009a003
  23. L. Ghimici, M. Constantin, and G. Fundueanu, Novel biodegradable flocculating agents based on pullulan, J. Hazard. Mat., 181, 351-358 (2010).  https://doi.org/10.1016/j.jhazmat.2010.05.017
  24. N. Levy, S. Magdassi, and Y. Bar-Or, Physico-chemical aspects in flocculation of bentonite suspensions by a cyanobacterial bioflocculant, Water Res., 26, 249-254 (1992).  https://doi.org/10.1016/0043-1354(92)90225-S
  25. K. Ma and A. C. Pierre, Effect of interaction between clay particles and Fe3+ ions on colloidal properties of kaolinite suspensions, Clay. Clay Miner., 45, 733-744 (1997).  https://doi.org/10.1346/CCMN.1997.0450512
  26. X. L. Chang, C. Wang, Y. Feng, and Z. Liu, Effects of heat treatments on the stabilities of polysaccharides substances and barbaloin in gel juice from Aloe vera Miller, J. Food Eng., 75, 245-251 (2006).  https://doi.org/10.1016/j.jfoodeng.2005.04.026
  27. V. M. Rodriguez-Gonzalez, A. Femenia, R. F. Gonzalez-Laredo, N. E. Rocha-Guzman, J. A. Gallegos-Infante, M. G. CandelasCadillo, P. Ramirez-Baca, S. Simal, and C. Rossellob, Effects of pasteurization on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller, Carbohyd. Polym., 86, 1675-1683 (2011). https://doi.org/10.1016/j.carbpol.2011.06.084