• Title/Summary/Keyword: Molecular symmetry

Search Result 76, Processing Time 0.024 seconds

The Crystal and Molecular Structures of Neo-inositol and Two Forms of Scyllo-inositol (Neo-inositol 및 Scyllo-inositol의 結晶 및 分子 構造)

  • Yeon, Younghee
    • Korean Journal of Crystallography
    • /
    • v.12 no.3
    • /
    • pp.150-156
    • /
    • 2001
  • Nea-inositol is triclinic P???, with a =4.799(1), b=6.520(1), c=6.505(1) Å, α=70.61(1), β=69.41(1), γ=73.66(1)°, Z=1, molecular symmetry ???. Scyllo-inositol, from A, is monoclinic, P2₂/c, with a=5.089(1), c=11.948(2)Å, β=116.98(2)°, Z=2, molecular symmetry ???. Form B is triclinic, P???, with a=6.725(1), b=6.797(1), c=8.635(2)° Å, α=95.45(2), β=99.49(2), γ=99.19(2)°, Z=2, molecular symmetry ???. This crystal structure is pseudo-monoclinic, having two centrosymmetrical molecules with the almost identical conformation and orientation in the crystal lattice. The molecules have the expected chair conformations with puckering parameters of Q=0.609(2)Å for n대, 0.581(2)Å for Scyllo-A, and 0.566(2) Å for Scyllo-B. The bond lengths and angles are normal, C-C, 1.505 to 1.531 8A, C-O, 1.415 to 1.440 Å, C-C-C, 108.2 to 112.9°. The molecules are linked by systems of finite and infinite chains of hydrogen bonds.

  • PDF

Strategies to Design Efficient Donor-Acceptor (D-A) Type Emitting Molecules: Molecular Symmetry and Electron Accepting Ability of D-A Type Molecules

  • Hyun Gi Kim;Young-Seok Baek;Sung Soo Kim;Sang Hyun Paek;Young Chul Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.633-639
    • /
    • 2023
  • We synthesized 2-(10-methyl-10H-phenothiazin-3-yl)-5-phenyl-1,3,4-oxadiazole (MPPO) and 5,5-(10-methyl-10H-phenothiazin-3,7-diyl)-bis-(2-phenyl-1,3,4-oxadiazole) (DPPO). MPPO has both electron-donating and electron-accepting substituents with asymmetric molecular geometry. By incorporating one extra electron-accepting group into MPPO, we created a symmetric molecule, which is DPPO. The optical and electrochemical properties of these compounds were measured. The lowest unoccupied molecular orbital (LUMO) level of DPPO was lower than that of MPPO. The excited-state dipole moment of DPPO, with symmetric geometry, was calculated to be 4.1 Debye, whereas MPPO, with asymmetric geometry, had a value of 7.0 Debye. The charge-carrier mobility of both compounds was similar. We fabricated non-doped organic light-emitting diodes (OLEDs) using D-A type molecules as an emitting layer. The current efficiency of the DPPO-based device was 7.8 cd/A, and the external quantum efficiency was 2.4% at 100 cd/m2, demonstrating significantly improved performance compared to the MPPO-based device. The photophysical and electroluminescence (EL) characteristics of the two D-A type molecules showed that molecular symmetry, as well as the lowered LUMO level of DPPO, played critical roles in the enhancement of EL performance.

Site-Directed Mutation Effect of the Symmetry Region at the mRNA 5'-end of Escherichia coli aeg-46.5 Gene

  • Ahn, Ju-Hyuk;Choe, Mu-Hyeon
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.92-97
    • /
    • 1996
  • The age-46.5 gene of Escherichia coli is induced by nitrate ion and regulated by Fnr, NarL, and NarP during anaerobic growth. aeg-46.5::lacZ fusion gene shows its maximum expression in narL host after two hours of aerobic to anaerobic switch in M9-Glc-nitrate medium. Fnr and NarP act as positive regulators, and NarL acts as a negative regulator. The control region of the aeg-46.5 was identified and the binding sites of regulator proteins have been predicted (Reznikoff and Choe (1993)). It has two symmetry regions. One is located at -52~-37 bp from the anaerobic mRNA 5'-end, which is the binding site of NarL and NarP. The other is located at +37~+56 bp from the 5'-end of mRNA. In this study, the downstream symmetry region from the mRNA 5'-end was investigated by site-directed mutagenesis. The destruction of the symmetry region increases the expression level of aeg-46.5. We propose that the symmetry region interferes with the expression of aeg-46.5 possibly by forming a stem-and-loop structure.

  • PDF

Symmetry and Spectra of Complexes of Azo-Substituted Copper Phthalocyanine (Copper Phthalocyanine과 그 Azo 置換錯鹽들의 對稱과 Spectra)

  • Cho Nam-Sook;Kim Ki-Hwan;Hahn Chi-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.378-384
    • /
    • 1972
  • The UV absorption spectra of the copper phthalocyanine and its azo derivatives in pyridine have been examined on the basis of symmetry operation, ligand field theory and molecular orbital consideration. The above treatment was also employed to determine the structure of the synthesized complexes.

  • PDF

Binding Symmetry of External Divalent Cations to Cyclic Nucleotide-gated IonChannel Reveled by Channel Tandem Dimers

  • Kwon, Ryuk-Jun;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.37-37
    • /
    • 2001
  • Cyclic nucleotide-gated (CNG) channels are composed of homo or hetero tetramer of ${\alpha}$ and ${\beta}$ subunits. The a subunits of these channels have a conserved glutamate residue within the pore-forming region. This residue determines the selectivity as well as the affinity for the extracellular divalent cations. Using the high affinity mutant (E363D) of bovine retinal CNG channel in which the Glu was replaced to Asp at position 363, we constructed tandem dimers and investigated the binding symmetry of divalent cation to the site.(omitted)

  • PDF

Unification Model and Rayleigh Scattered Lyα in Active Galactic Nuclei

  • Chang, Seok-Jun;Lee, Hee-Won;Yang, Yujin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.33.2-34
    • /
    • 2016
  • The unification model of active galactic nuclei invokes the presence of a thick molecular torus that hides the broad emission line region from a line of sight toward observers with low latitude. It is expected that the illuminated side of the molecular torus may be photodissociated by strong far UV radiation from the central AGN, forming an H I region with a high neutral column density. We propose that the Rayleigh scattering optical depth of this HI region can be significant for most broad $Ly{\alpha}$ line photons with the Doppler factor not exceeding 104 km s-1. Rayleigh scattered $Ly{\alpha}$ photons can be characterized by strong linear polarization depending on their scattering optical depth. We performed Monte Carlo simulations of polarized radiative transfer of $Ly{\alpha}$ adopting simple scattering geometries relevant to the unification model of AGN. We find that for a low torus the Rayleigh scattered $Ly{\alpha}$ is polarized in the direction parallel to the symmetry axis with the polarization degree dependent on wavelength. In the case of a high torus, the core part of $Ly{\alpha}$ is polarized in the direction perpendicular to the symmetry axis whereas the wing part is parallelly polarized. We conclude that careful spectropolarimetry around $Ly{\alpha}$ can be useful in testing the AGN unification model.

  • PDF

The Crystal Structure of L-Leucine Dehydrogenase from Pseudomonas aeruginosa

  • Kim, Seheon;Koh, Seri;Kang, Wonchull;Yang, Jin Kuk
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.495-501
    • /
    • 2022
  • Leucine dehydrogenase (LDH, EC 1.4.1.9) catalyzes the reversible deamination of branched-chain L-amino acids to their corresponding keto acids using NAD+ as a cofactor. LDH generally adopts an octameric structure with D4 symmetry, generating a molecular mass of approximately 400 kDa. Here, the crystal structure of the LDH from Pseudomonas aeruginosa (Pa-LDH) was determined at 2.5 Å resolution. Interestingly, the crystal structure shows that the enzyme exists as a dimer with C2 symmetry in a crystal lattice. The dimeric structure was also observed in solution using multiangle light scattering coupled with size-exclusion chromatography. The enzyme assay revealed that the specific activity was maximal at 60℃ and pH 8.5. The kinetic parameters for three different amino acid and the cofactor (NAD+) were determined. The crystal structure represents that the subunit has more compact structure than homologs' structure. In addition, the crystal structure along with sequence alignments indicates a set of non-conserved arginine residues which are important in stability. Subsequent mutation analysis for those residues revealed that the enzyme activity reduced to one third of the wild type. These results provide structural and biochemical insights for its future studies on its application for industrial purposes.

Simulation for nanoimprint lithography process using temperature controlled nonequilibrium molecular dynamics (온도 제어 비평형 분자동역학 방법을 이용한 나노임프린트 리소그라피 공정의 전산모사)

  • Kwon, Sung-Jin;Lee, Young-Min;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.332-336
    • /
    • 2007
  • Temperature is an essential process variable in nanoimprint lithography(NIL) where the temperature varies between room temperature and above the glass transition temperature. To simulate NIL process, we employ both the Nose-Poincare method for temperature controlled molecular dynamics(MD) and force field for polymer material i.e. polymethyl methacrylate(PMMA), which is most widely selected as NIL resist. Nose-Poincare method, which convinces the conservation of Hamiltonian structure and time-reversal symmetry, overcomes the drawbacks inherent in the conventional methods such as Nose thermostat and Nose-Hoover thermostat. Thus, this method exhibits enhanced numerical stability even when the temperature fluctuation is large. To describe PMMA, we adopt the force field which account for bond stretch, bending, torsion, inversion, partial charge, and van der Waals energy.

  • PDF

Electronic Structures of a Macrocyclic Fulleropyrrolidine

  • 황선구;이종명;전일철
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.12
    • /
    • pp.1112-1117
    • /
    • 1996
  • The electronic structures of twenty-seven isomers of a macrocyclic fulleropyrrolidine are investigated with semi-empirical extended Huckel (EH) molecular orbital method. The geometry of each isomer is determined by the molecular mechanics and dynamics methods based on UFF (universal force field) empirical force field. The calculated geometries, such as the carbon-carbon distances of the fullerene moiety, are in good agreement with those of related fullerene derivatives. The EH calculation shows that the formation of macrocyclic pyrrolidine ring on fullerene moiety results in the reduction of the HOMO-LUMO energy gap. From the graphical analysis of the DOS (density of states), PDOS (projected DOS), and MOOP (molecular orbital overlap population) curves, we can find that this reduction is due to splitting of the HOMO of fullerene moiety, which results from the symmetry-breaking and the distortion of the buckminsterfullerene framework from its ideal icosahedral structure.

THEORETICAL ANALYSIS ON THE PHOTOCHEMISTRY OF COUMARIN DERIVATIVES

  • Kim, Ja-Hong;Sohn, Sung-Ho;Kim, Jung-Sung
    • Journal of Photoscience
    • /
    • v.2 no.2
    • /
    • pp.95-98
    • /
    • 1995
  • The photodimers with cyclobutane rings and C$_2$ symmetry, derived from coumarin (syn, head to tail and anti, head to head) have been calculated by PM3-UHF-CI and Molecular Mechanics force field. The photocycloaddition to coumarin and 5,7-dimethoxycoumarin(DMC) dimers were deduced to be formed by their preferable frontier orbital interactions and via more stable cycloaddition by the C$_3$, C$_4$ bond. These results are consistent with the coumarin dimer model that the theoretical C$_4$-photocyclodimer of coumarin is predicted much more than the experimental C$_4$-photocyclodimer.

  • PDF