과제정보
The reported study was funded by RFBR, project number 20-011-00837.
참고문헌
- Venkatesh, V., Chan, F.K.Y., Thong, J.Y.L.: Designing egovernment services: Key service attributes and citizens' preference structures. Journal of Operations Management, 30 (43862), 116-133 (2012) https://doi.org/10.1016/j.jom.2011.10.001
- Hochtl, J., Parycek, P., Schollhammer, R.: Big data in the policy cycle: Policy decision making in the digital era. Journal of Organizational Computing and Electronic Commerce, 26 (1-2), 147-169 (2016) https://doi.org/10.1080/10919392.2015.1125187
- Bertot, J.C., Gorham, U., Jaeger, P.T., Sarin, L.C., Choi, H.: Big data, open government and e-government: Issues, policies and recommendations. Information Polity, 19 (1-2), 5-16 (2014) https://doi.org/10.3233/IP-140328
- Housley, W., Dicks, B., Henwood, K., Smith, R.: Qualitative methods and data in digital societies. Qualitative Research, 17 (6), 607-609 (2017) https://doi.org/10.1177/1468794117730936
- Schmiele, A.: Intellectual property infringements due to R&D abroad? A comparative analysis between firms with international and domestic innovation activities. Research Policy, 42 (8), 1482-1495 (2013) https://doi.org/10.1016/j.respol.2013.06.002
- Rissland, E.L., Skalak, D.B., Friedman, M.T.: BankXX: Supporting legal arguments through heuristic retrieval. Artificial Intelligence and Law, 4, 1-71 (1996) https://doi.org/10.1007/BF00123994
- Giord, M.: LexrideLaw: An argument based legal search engine. In: ICAIL'17: Proceedings of the 16th of the International Conference on Artificial Intelligence and Law, 271-272 (2017)
- Libal, T., Steen, A.: NAI: The normative reasoner. In: ICAIL'19: Proceedings of the 17th of the International Conference on Artificial Intelligence and Law, 262-263 (2019)
- Stranieri, A., Zeleznikow, J., Gawler, M., Lewis, B.: Hybrid rule-neural approach for the automation of legal reasoning in the discretionary domain of family law in Australia. Artificial Intelligence and Law, 7 (2), 153-183 (1999) https://doi.org/10.1023/A:1008325826599
- Ashley, K.D., Bruninghaus, S.: Automatically classifying case texts and predicting outcomes. Artificial Intelligence and Law, 17, 125-165 (2009) https://doi.org/10.1007/s10506-009-9077-9
- Grabmair, M.: Predicting trade secret case outcomes using argument schemes and learned quantitative value effect tradeoffs. In: ICAIL'17: Proceedings of the 16th of the International Conference on Artificial Intelligence and Law, 89-98 (2017)
- Gelbart, D., Smith, J. C.: FLEXICON: An evaluation of a statistical ranking model adapted to intelligent legal text management. In: ICAIL'93: Proceedings of the 4th edition of the International Conference on Artificial Intelligence and Law, 142-151 (1993)
- Schweighofer, E., Winiwarter, W.: Legal expert system KONTERM - Automatic representation of document structure and contents. In: DEXA'93: Proceedings of the 4th International Conference for Database and Expert Systems Applications, 486-497 (1993)
- Casanovas, P., Binefa i Valls, X., Gracia, C., Teodoro, E., Galera, N., Blazquez, M., Poblet, M., Carrabina, J., Monton, M., Montero, C., Serrano, J., Lopez-Cobo, J.M.: The eSentencias prototype: A procedural ontology for legal multimedia applications in the Spanish civil courts. In: Breuker, J., Casanovas, P., Klein, M.C.A., Francesconi, E. (eds.). Law, Ontologies and the Semantic Web: Channelling the Legal Information Flood, pp. 199-219 Amsterdam, IOS Press (2009)
- Boella, G., Di Caro, L., Leone, V.: Semi-automatic knowledge population in a legal document management system. Artificial Intelligence and Law, 27 (2), 227-251 (2019) https://doi.org/10.1007/s10506-018-9239-8
- Garcia-Constantino, M., Atkinson, K., Bollegala, D., Chapman, K., Coenen, F., Roberts, C., Robson, K.: CLIEL: Context-based information extraction from commercial law documents. In: ICAIL'17: Proceedings of the 16th of the International Conference on Artificial Intelligence and Law, 79-87 (2017)
- Agnoloni, T., Bacci, L., Francesconi, E., Spinosa, P., Tiscornia, D., Montemagni, S., Venturi, G.: Building an ontological support for multilingual legislative drafting. In: JURIX'2007: Legal Knowledge and Information Systems, 9-18 (2007)
- Nanda, R., Siragusa, G., Caro, L.D., Boella, G., Grossio, L., Gerbaudo, M., Costamagna, F.: Unsupervised and supervised text similarity systems for automated identification of national implementing measures of European directives. Artificial Intelligence and Law, 27 (2), 199-225 (2019) https://doi.org/10.1007/s10506-018-9236-y
- Hachey, B., Grover, C.: Automatic legal text summarisation: experiments with summary structuring. In: ICAIL'05: Proceedings of the 10th of the International Conference on Artificial Intelligence and Law, 75-84 (2005)
- Mozina, M., Zabkar, J., Bench-Capon, T., Bratko, I.: Argument based machine learning applied to law. Artificial Intelligence and Law, 13 (1), 53-73 (2005) https://doi.org/10.1007/s10506-006-9002-4
- Ashley, K.D., Walker, V.R.: Toward constructing evidencebased legal arguments using legal decision documents and machine learning. In: ICAIL'13: Proceedings of the 14th of the International Conference on Artificial Intelligence and Law, 176-180 (2013)
- Savelka, J., Ashley, K.D.: Transfer of predictive models for classification of statutory texts in multijurisdictional settings. In: ICAIL'15: Proceedings of the 15th of the International Conference on Artificial Intelligence and Law, 216-226 (2015)
- Torrisi, A., Bevan, R., Atkinson, K., Bollegala, D., Coenen, F.: Automated bundle pagination using machine learning. In: ICAIL'19: Proceedings of the 17th of the International Conference on Artificial Intelligence and Law, 244-248 (2019)
- Maurushat, A., Moses, L.B., Vaile, D.: Using "big" metadata for criminal intelligence: Understanding limitations and appropriate safeguards. In: ICAIL'15: Proceedings of the 15th of the International Conference on Artificial Intelligence and Law, 196-200 (2015)
- McGinnis, J.O., Stein, B.: Originalism, hypothesis testing and big data. In: ICAIL'15: Proceedings of the 15th of the International Conference on Artificial Intelligence and Law, 201-205 (2015)
- Aletras, N., Tsarapatsanis, D., Preotiuc-Pietro, D., Lampos, V.: Predicting judicial decisions of the European Court of Human Rights: a Natural Language Processing perspective. PeerJ Computer Science, 2, e93 (2016) https://doi.org/10.7717/peerj-cs.93
- Walter, S., Pinkal, M.: Automatic extraction of definitions from german court decisions. In: Proceedings of the Workshop on Information Extraction Beyond the Document, 20-28, Sydney, Australia: Association for Computational Linguistics (2006)
- Metsker, O., Trofimov, E., Sikorsky, S., Kovalchuk, S.: Text and data mining techniques in judgment open data analysis for administrative practice control. Communications in Computer and Information Science, 947, 169-180 (2019) https://doi.org/10.1007/978-3-030-13283-5_13
- Metsker, O., Trofimov, E., Petrov, M., Butakov, N.: Russian court decisions data analysis using distributed computing and machine learning to improve lawmaking and law enforcement. Procedia Computer Science, 156, 264-273 (2019) https://doi.org/10.1016/j.procs.2019.08.202
- Stevens, C., Barot, V., Carter, J.: The next generation of legal expert systems - New dawn or false dawn? In: Research and Development in Intelligent Systems XXVII: Incorporating Applications and Innovations in Intelligent Systems XVIII: Proceedings of AI'2010, pp. 439-452, London: Springer (2011)
- Sminia, H.: Process research in strategy formation: Theory, methodology and relevance. International Journal of Management Reviews, 11 (1), 97-125 (2009) https://doi.org/10.1111/j.1468-2370.2008.00253.x
- Robeyns, I.: The capability approach: a theoretical survey. Journal of Human Development, 6 (1), 93-117 (2005) https://doi.org/10.1080/146498805200034266
- Walker, R.F., Oskamp, A., Schrickx, J.A., Opdorp, G.J., van den Berg, P.H.: PROLEXS: Creating law and order in a heterogeneous domain. International Journal of ManMachine Studies, 35 (1), 35-68 (1991) https://doi.org/10.1016/S0020-7373(07)80007-1
- Popple, J.: A pragmatic legal expert system. Aldershot: Dartmouth (1996)
- Hunt, T., Song, C., Shokri, R., Shmatikov, V., Witchel, E.: Chiron: privacy-preserving machine learning as a service. arXiv:1803.05961 [cs.CR] (2018)
- Giovannoni, F.: Deliberate discretion? The institutional foundations of bureaucratic autonomy. Economic Journal, 114 (493), F149-F154 (2004) https://doi.org/10.1111/j.0013-0133.2004.191_6.x
- Fried, B.H.: Ex ante / ex post. Journal of Contemporary Legal Issues, 13, 123-160 (2003)
- Schauer, F.F.: Thinking like a lawyer: a new introduction to legal reasoning. Cambridge, MA: Harvard University Press (2009)
- Cuttler, M.J., Muchinsky, P.M.: Prediction of law enforcement training performance and dysfunctional job performance with general mental ability, personality, and life history variables. Criminal Justice and Behavior, 33 (1), 3-25 (2006) https://doi.org/10.1177/0093854805282291
- Zhong, H., Guo, Z., Tu, C., Xiao, C., Liu, Z., Sun, M.: Legal judgment prediction via topological learning. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3540-3540, Brussels, Belgium: Association for Computational Linguistics (2018)
- Rissland, E.L., Skalak, D.B.: CABARET: Rule interpretation in a hybrid architecture. International Journal of ManMachine Studies, 34 (6), 839-887 (1991). https://doi.org/10.1016/0020-7373(91)90013-W
- Jurado, F., Redondo, M.A., Ortega, M.: Blackboard architecture to integrate components and agents in heterogeneous distributed eLearning systems: An application for learning to program. Journal of Systems and Software, 85, 1621-1636 (2012) https://doi.org/10.1016/j.jss.2012.02.009
- Maxeiner, J.: Legal certainty: a European alternative to American legal indeterminacy? Tulane Journal of International and Comparative Law, 15 (2), 541-608 (2007)
- Sonn, C.C., Fisher, A.T.: Identity and oppression: differential responses to an in-between status. American Journal of Community Psychology, 31, 117-128 (2003) https://doi.org/10.1023/A:1023030805485
- Friedman, L.M. The legal system: a social science perspective. New York: Russell Sage Foundation (1975)
- Cai, W.H., Deng, Y.Q.: An algorithm design for a digital rights management system. In: ASID'2007: International Workshop on Anti-Counterfeiting, Security and Identification, 275-279 (2007)
- Lagnado, D.A., Gerstenberg, T.: Causation in legal and moral reasoning. In: Waldmann M.R. (ed.). Oxford Handbook of Causal Reasoning, pp. 565-602. New York: Oxford University Press (2017)
- Cohn, E.S., Bucolo, D., Rebellon, C.J., van Gundy, K.: An integrated model of legal and moral reasoning and ruleviolating behavior: The role of legal attitudes. Law and Human Behavior, 34, 295-309 (2010) https://doi.org/10.1007/s10979-009-9185-9
- Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. Lecture Notes in Computer Science, 3408, 345-359 (2005)
- Pakhomov, O., Kopanitsa, G., Metsker, O., Trofimov, E.: Forecasting efficiency of programs and optimization of local budgets in smart cities for a better quality of life. Conference of Open Innovations Association FRUCT, 2022-April (2), 443-449 (2022)
- Trofimov, E., Metsker, O.: Methodology for the qualitative assessment of the legal optimization (data mining and machine learning on judgment big data in cases of administrative offenses and criminal cases). SSRN: https://ssrn.com/abstract=3983128 (2021)
- Davis, K.E.: Legal indicators: The power of quantitative measures of law. Annual Review of Law and Social Science, 10, 37-52 (2014) https://doi.org/10.1146/annurev-lawsocsci-110413-030857