Acknowledgement
본 논문은 2022년도 해양수산부 및 해양수산과학기술진흥원 연구비 지원으로 수행된 '자율운항선박 기술개발사업(20200615)'의 연구결과입니다.
References
- Abreu, F. H. O., A. Soares, F. V. Paulovich, and S. Matwin(2021b), A trajectory scoring tool for local anomaly detection in maritime traffic using visual analytics. ISPRS International Journal of Geo-Information, 10(6), 412. https://doi.org/10.3390/ijgi10060412
- Abreu, F. H. O., A. Soares, F. V. Paulovich, and S. Matwin(2021a), Local anomaly detection in maritime traffic using visual analytics. Paper presented at the EDBT/ICDT Workshops.
- Acomi, N.(2020), Impact of chart data accuracy on the safety of navigation. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 14(2).
- Altan, Y. C. and E. N. Otay(2017), Maritime traffic analysis of the strait of istanbul based on AIS data. The Journal of Navigation, 70(6), pp. 1367-1382. https://doi.org/10.1017/S0373463317000431
- Alvarez, N. G., B. Adenso-Diaz, and L. Calzada-Infant(2021), Maritime traffic as a complex network: A systematic review. Networks and Spatial Economics, 21(2), pp. 387-417. https://doi.org/10.1007/s11067-021-09528-7
- Aps, R., M. Fetissov, F. Goerlandt, P. Kujala, and A. Piel(2017), Systems-theoretic process analysis of maritime traffic safety management in the gulf of finland (baltic sea), Procedia Engineering, 179, pp. 2-12. https://doi.org/10.1016/j.proeng.2017.03.090
- Arguedas, V. F., G. Pallotta, and M. Vespe(2014), Automatic generation of geographical networks for maritime traffic surveillance. Paper presented at the 17th International Conference on Information Fusion (FUSION), pp. 1-8.
- Arguedas, V. F., G. Pallotta, and M. Vespe(2017), Maritime traffic networks: From historical positioning data to unsupervised maritime traffic monitoring. IEEE Transactions on Intelligent Transportation Systems, 19(3), pp. 722-732. https://doi.org/10.1109/TITS.2017.2699635
- Baldauf, M., K. Benedict, S. Fischer, F. Motz, and J. U. Schroder-Hinrichs(2011), Collision avoidance systems in air and maritime traffic. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 225(3), pp. 333-343. https://doi.org/10.1177/1748006X11408973
- Bodunov, O., F. Schmidt, A. Martin, A. Brito, and C. Fetzer(2018), Real-time destination and eta prediction for maritime traffic. Paper presented at the Proceedings of the 12th ACM International Conference on Distributed and Event-Based Systems, pp. 198-201.
- Campana, I., D. Angeletti, R. Crosti, C. Luperini, A. Ruvolo, A. Alessandrini, et al.(2017), Seasonal characterisation of maritime traffic and the relationship with cetacean presence in the western mediterranean sea. Marine Pollution Bulletin, 115(1-2), pp. 282-291. https://doi.org/10.1016/j.marpolbul.2016.12.008
- Campana, I., R. Crosti, D. Angeletti, L. Carosso, L. David, N. Di-Meglio, et al.(2015), Cetacean response to summer maritime traffic in the western mediterranean sea. Marine Environmental Research, 109, pp. 1-8. https://doi.org/10.1016/j.marenvres.2015.05.009
- Coscia, P., P. Braca, L. M. Millefiori, F. A. Palmieri, and P. Willett(2018), Multiple Ornstein-Uhlenbeck processes for maritime traffic graph representation. IEEE Transactions on Aerospace and Electronic Systems, 54(5), pp. 2158-2170. https://doi.org/10.1109/TAES.2018.2808098
- Du, L., F. Goerlandt, and P. Kujala(2020), Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data. Reliability Engineering and System Safety, 200, 106933. https://doi.org/10.1016/j.ress.2020.106933
- Feng, X. X., M. Zhang, and Z. Liu(2012), Analysis on sediment environment and waterway siltation characteristics of panjin port. Paper presented at the Applied Mechanics and Materials, 212. pp. 205-210. https://doi.org/10.4028/www.scientific.net/AMM.212-213.205
- Gaspar, J. A., and H. Leitao(2018), What is a nautical chart, really? uncovering the geometry of early modern nautical charts. Journal of Cultural Heritage, 29, pp. 130-136. https://doi.org/10.1016/j.culher.2017.09.008
- Hanninen, M.(2014), Bayesian networks for maritime traffic accident prevention: Benefits and challenges. Accident Analysis and Prevention, 73, pp. 305-312. https://doi.org/10.1016/j.aap.2014.09.017
- Hofbauer, F. and L. Putz(2020), External costs in inland waterway transport: An analysis of external cost categories and calculation methods. Sustainability, 12(14), 5874. https://doi.org/10.3390/su12145874
- Hwang, T. and I. Youn(2021). Navigation Situation Clustering Model of Human-Operated Ships for Maritime Autonomous Surface Ship Collision Avoidance Tests. Journal of Marine Science and Engineering, 9(12), 1458. https://doi.org/10.3390/jmse9121458
- Jeong, J. S., G. Park, and K. I. Kim(2012), Risk assessment model of maritime traffic in time-variant CPA environments in waterway. Journal of Advanced Computational Intelligence and Intelligent Informatics, 16(7), pp. 866-873. https://doi.org/10.20965/jaciii.2012.p0866
- Jiacai, P., J. Qingshan, H. Jinxing, and S. Zheping(2012), An AIS data visualization model for assessing maritime traffic situation and its applications. Procedia Engineering, 29, pp. 365-369. https://doi.org/10.1016/j.proeng.2011.12.724
- Kim, D., H. Shin, and D. Jang(2020), Analysis of Long-Term Variation in Marine Traffic Volume and Characteristics of Ship Traffic Routes in Yeosu Gwangyang Port. The Korean Society of Marine Environment and Safety, 26(1), pp. 31-38. https://doi.org/10.7837/kosomes.2020.26.1.031
- Kim, D., J. Park, and Y. Park(2011a), Comparison analysis between the IWRAP and the ES model in ulsan waterway. Journal of Navigation and Port Research, 35(4), pp. 281-287. https://doi.org/10.5394/KINPR.2011.35.4.281
- Kim, K., G. Park, and J. Jeong(2011b), Analysis of marine accident probability in mokpo waterways. Journal of Navigation and Port Research, 35(9), pp. 729-733. https://doi.org/10.5394/KINPR.2011.35.9.729
- Kim, K., J. S. Jeong, and G. Park(2012), A study on development of maritime traffic assessment model. Journal of the Korean Institute of Intelligent Systems, 22(6), pp. 761-767. https://doi.org/10.5391/JKIIS.2012.22.6.761
- Kim, K., J. S. Jeong, and G. Park(2013), Assessment of external force acting on ship using big data in maritime traffic. Journal of the Korean Institute of Intelligent Systems, 23(5), pp. 379-384. https://doi.org/10.5391/JKIIS.2013.23.5.379
- Kim, S., H. Rhee, and I. Gong(2017), Improving assessments of maritime traffic congestion based on occupancy area density analysis for traffic vessels. Journal of the Korean Society of Marine Environment and Safety, 23(2), pp. 153-160. https://doi.org/10.7837/kosomes.2017.23.2.153
- Kontopoulos, I., I. Varlamis, and K. Tserpes(2021), A distributed framework for extracting maritime traffic patterns. International Journal of Geographical Information Science, 35(4), pp. 767-792. https://doi.org/10.1080/13658816.2020.1792914
- Lei, P.(2020), Mining maritime traffic conflict trajectories from a massive AIS data. Knowledge and Information Systems, 62(1), pp. 259-285. https://doi.org/10.1007/s10115-019-01355-0
- Lei, P., T. Tsai, and W. Peng(2016), Discovering maritime traffic route from AIS network. Paper presented at the 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1-6.
- Li, Q., B. Zhan, and Q. B. Zhang(2013), The analysis of feasibility between waterway transportation and economy of hubei province based on DEA model. Paper presented at the Advanced Materials Research, , 694. pp. 3333-3335.
- Lu, N., M. Liang, R. Zheng, and R. W. Liu(2020), Historical AIS data-driven unsupervised automatic extraction of directional maritime traffic networks. Paper presented at the 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), pp. 7-12.
- Mazaheri, A., J. Montewka, P. Kotilainen, O. E. Sormunen, and P. Kujala(2015), Assessing grounding frequency using ship traffic and waterway complexity. The Journal of Navigation, 68(1), pp. 89-106. https://doi.org/10.1017/S0373463314000502
- Mansson, J. T., M. Lutzhoft, and B. Brooks(2017), Joint activity in the maritime traffic system: Perceptions of ship masters, maritime pilots, tug masters, and vessel traffic service operators. The Journal of Navigation, 70(3), pp. 547-560. https://doi.org/10.1017/S0373463316000758
- Mehta, V. A. Zaloom, and B. N. Craig(2016), Analysis of waterway transportation in southeast texas waterway based on AIS data. Ocean Engineering, 121, pp. 196-209. https://doi.org/10.1016/j.oceaneng.2016.05.012
- Mladineo, N., M. Mladineo, and S. Knezic(2017), Web MCA-based decision support system for incident situations in maritime traffic: Case study of adriatic sea. The Journal of Navigation, 70(6), pp. 1312-1334. https://doi.org/10.1017/S0373463317000388
- Oh, J. and H. Kim(2020), Spatiotemporal Analysis of Vessel Trajectory Data using Network Analysis. Journal of the Korean Society of Marine Environment and Safety, 26(7), pp 759-766. https://doi.org/10.7837/kosomes.2020.26.7.759
- Probha, N. A. and M. S. Hoque(2018), A study on transport safety perspectives in bangladesh through comparative analysis of roadway, railway and waterway accidents. Paper presented at the Proceedings of the Asia-Pacific Conference on Intelligent Medical 2018 and International Conference on Transportation and Traffic Engineering 2018, pp. 81-85.
- Perera, L. P., P. Oliveira, and C. G. Soares(2012), Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction. IEEE Transactions on Intelligent Transportation Systems, 13(3), pp. 1188-1200. https://doi.org/10.1109/TITS.2012.2187282
- Praetorius, G. and E. Hollnagel(2014), Control and resilience within the maritime traffic management domain. Journal of Cognitive Engineering and Decision Making, 8(4), pp. 303-317. https://doi.org/10.1177/1555343414560022
- Praetorius, G.(2014), Vessel Traffic Service (VTS): A Maritime Information Service Or Traffic Control System?: Understanding Everyday Performance and Resilience in a Socio-Technical System Under Change.
- Ray, C., A. Grancher, R. Thibaud, and L. Etienne(2013), Spatio-temporal rule-based analysis of maritime traffic. Paper presented at the Third Conference on Ocean and Coastal Observation: Sensors and Observing Systems, Numerical Models and Information (OCOSS).
- Reed, S. and V. E. Schmidt(2016), Providing nautical chart awareness to autonomous surface vessel operations. Paper presented at the OCEANS 2016 MTS/IEEE Monterey, pp. 1-8.
- Robards, M. D., G. K. Silber, J. D. Adams, J. Arroyo, D. Lorenzini, K. Schwehr, et al.(2016), Conservation science and policy applications of the marine vessel automatic identification system (AIS) - a review. Bulletin of Marine Science, 92(1), pp. 75-103. https://doi.org/10.5343/bms.2015.1034
- Sang, L., A. Wall, Z. Mao, X. Yan, J. and Wang(2015), A novel method for restoring the trajectory of the inland waterway ship by using AIS data. Ocean Engineering, 110, pp. 183-194. https://doi.org/10.1016/j.oceaneng.2015.10.021
- Serry, A.(2016), The automatic identification system (AIS): A data source for studying maritime traffic. Paper presented at the Maritime Transport'16.
- Tafa, L. N., X. Su, J. Hong, and C. Choi(2019), Automatic maritime traffic synthetic route: A framework for route prediction. Paper presented at the International Symposium on Pervasive Systems, Algorithms and Networks, pp. 3-14.
- Teixeira, A. P. and C. Guedes Soares(2018), Risk of maritime traffic in coastal waters. Paper presented at the International Conference on Offshore Mechanics and Arctic Engineering, 51326, pp. V11AT12A025.
- Vanek, O., M. Jakob, O. Hrstka, and M. Pechoucek(2013), Agent-based model of maritime traffic in piracy-affected waters. Transportation Research Part C: Emerging Technologies, 36, pp. 157-176. https://doi.org/10.1016/j.trc.2013.08.009
- Vespe, M., I. Visentini, K. Bryan, and P. Braca(2012), Unsupervised learning of maritime traffic patterns for anomaly detection.
- Venskus, J., P. Treigys, J. Bernataviciene, G. Tamulevicius, and V. Medvedev(2019), Real-time maritime traffic anomaly detection based on sensors and history data embedding. Sensors, 19(17), 3782. https://doi.org/10.3390/s19173782
- Wei, L., Y. Xiaowen, and L. Chunxia(2013), Analysis of container transportation in yangtze river delta: Waterway-road transport versus road transport. Journal of Chongqing Jiaotong University (Natural Science), 32(2), p. 274.
- Xiao, F., H. Ligteringen, C. Van Gulijk, and B. Ale(2012), Artificial force fields for multi-agent simulations of maritime traffic: A case study of chinese waterway. Procedia Engineering, 45, pp. 807-814. https://doi.org/10.1016/j.proeng.2012.08.243
- Xiao, Z., X. Fu, L. Zhang, and R. S. M. Goh(2019), Traffic pattern mining and forecasting technologies in maritime traffic service networks: A comprehensive survey. IEEE Transactions on Intelligent Transportation Systems, 21(5), pp. 1796-1825. https://doi.org/10.1109/TITS.2019.2908191
- Xiao, Z., X. Fu, L. Zhang, L. Ponnambalam, and R. S. M. Goh(2017), Data-driven multi-agent system for maritime traffic safety management. Paper presented at the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1-6.
- Xin, X., K. Liu, X. Yang, Z. Yuan, and J. Zhang(2019), A simulation model for ship navigation in the "Xiazhimen" waterway based on statistical analysis of AIS data. Ocean Engineering, 180, pp. 279-289. https://doi.org/10.1016/j.oceaneng.2019.03.052
- Xue, J., P. Van Gelder, G. Reniers, E. Papadimitriou, and C. Wu(2019), Multi-attribute decision-making method for prioritizing maritime traffic safety influencing factors of autonomous ships' maneuvering decisions using grey and fuzzy theories. Safety Science, 120, pp. 323-340. https://doi.org/10.1016/j.ssci.2019.07.019
- Yang, D., A. T. Chin, and S. Chen(2014), Impact of politics, economic events and port policies on the evolution of maritime traffic in chinese ports. Maritime Policy and Management, 41(4), pp. 346-366. https://doi.org/10.1080/03088839.2013.784399
- Zhen, R., M. Riveiro, and Y. Jin(2017), A novel analytic framework of real-time multi-vessel collision risk assessment for maritime traffic surveillance. Ocean Engineering, 145, pp. 492-501. https://doi.org/10.1016/j.oceaneng.2017.09.015
- Zhang, W., X. Feng, F. Goerlandt, and Q. Liu(2020), Towards a convolutional neural network model for classifying regional ship collision risk levels for waterway risk analysis. Reliability Engineering and System Safety, 204, 107127. https://doi.org/10.1016/j.ress.2020.107127
- Zhou, Y., W. Daamen, T. Vellinga, and S. Hoogendoorn (2019), Review of maritime traffic models from vessel behavior modeling perspective. Transportation Research Part C: Emerging Technologies, 105, pp. 323-345. https://doi.org/10.1016/j.trc.2019.06.004
- Zissis, D., K. Chatzikokolakis, G. Spiliopoulos, and M. Vodas(2020), A distributed spatial method for modeling maritime routes. IEEE Access, 8, pp. 47556-47568. https://doi.org/10.1109/ACCESS.2020.2979612