DOI QR코드

DOI QR Code

Effects of Drip Irrigation Volumes on Plant Growth and Yield of Tomato Grown in Perlite

펄라이트 재배에서 급액량이 토마토의 생육과 수량에 미치는 영향

  • Kim, Doo Han (Department of Agriculture and Industries, Kangwon National University Graduate School) ;
  • Shawon, Md Rayhan Ahmed (Division of Future Agriculture Convergence, Department of Controlled Agriculture, Kangwon National University) ;
  • An, Jin Hee (Department of Agriculture and Industries, Kangwon National University Graduate School) ;
  • Lee, Hyoun Jin (Department of Agriculture and Industries, Kangwon National University Graduate School) ;
  • Lee, Yun-Jae (Department of Agriculture and Industries, Kangwon National University Graduate School) ;
  • Kim, Minkyung (Department of Agriculture and Industries, Kangwon National University Graduate School) ;
  • Lee, Yong-Beom (International Horticulture Institute) ;
  • Choi, Ki Young (Department of Agriculture and Industries, Kangwon National University Graduate School)
  • 김두한 (강원대학교 대학원 농산업학과) ;
  • 라이한 샤원 (강원대학교 미래농업융합학부) ;
  • 안진희 (강원대학교 대학원 농산업학과) ;
  • 이현진 (강원대학교 대학원 농산업학과) ;
  • 이윤재 (강원대학교 대학원 농산업학과) ;
  • 김민경 (강원대학교 대학원 농산업학과) ;
  • 이용범 (국제원예연구원) ;
  • 최기영 (강원대학교 미래농업융합학부)
  • Received : 2022.09.13
  • Accepted : 2022.10.04
  • Published : 2022.10.31

Abstract

The objective of this experiment was to investigate the effect of drip irrigation volume on tomatoes (Solanum lycopersicum L.) grown in a greenhouse using perlite medium. Plants were treated by three different irrigation treatment I0, I25, and I50 (where irrigation volume of I25 and I50 was 25% and 50% higher than I0, having limited or no leaching). Growth characteristics of plants, yield and water use efficiency were measured. The result showed that plant height, leaf length and leaf width were lowest in the I0 treated plants. However, these parameters were not statistically significant differences between the plants that were grown in the I25 and I50 treatment. Soluble solids content, acidity and dry matter of 111th, 132nd, and 143rd days harvested tomato were higher in the plants irrigated with lowest volume (I0) than the higher volume (I25 or I50). In addition, water content was lower in the 111th and 132nd days of harvested tomatoes from the I0 treatment. The number of big-size tomatoes (>180 g) was significantly higher in the I25 irrigated plants. There was no significant difference in the total number of harvested fruits among the treatments. The average fruit weight and total yield of harvested tomatoes were lowest in the I0 treated plants. The water consumption of tomato was not significantly different amongst the treatments but water use efficiency was lowest in the I0 treatment. Principal component analysis revealed that total soluble solid and acidity of tomato showed a positive correlation between each other. These results suggest that I25 was the optimum irrigation treatment for tomato based on its measured growth characteristics, yield and water use efficiency.

본 실험은 펄라이트 수경재배에서 급액량이 토마토(Solanum lycopersicum L.)의 생육과 수량에 미치는 영향을 조사하기 위해 수행되었다. 급액 처리는 대조구인 I0와 대조구보다 급액량이 각 25%, 50% 많은 I25와 I50로 세수준 처리하였다. 처리기간 중 대조구 I0 처리구는 배액이 없었다. 조사항목으로 토마토 생육특성, 수량 및 수분이용효율을 측정하였다 토마토의 초장, 엽장 및 엽폭이. I0 처리 가장 짧았고 I25와 I50 처리에서는 통계적으로 차이가 없었다. 처리 후 111일, 132일 및 143일째에 측정한 토마토 과실의 당도, 산도 및 건물율은 관수량이 가장 적은 I0가 관수량이 많은 I25와 I50 보다 높았다. 그러나 처리 후 111일과 132일째 과실 내 수분함량은 I0 처리에서 가장 낮았다. 대과(>180g)의 수는 I25에서 유의하게 더 많았으나 총 수확과 수는 처리 간 유의한 차이가 없었다. 과실의 평균 과중(g·plant-1)과 총 수확량(g·plant-1)은 I0 처리된 토마토에서 가장 낮았다. 수분 소비량은 처리 간 유의한 차이가 없었으나 수분이용효율은 I0 처리에서 가장 낮았다. 주성분 분석 결과 과실의 당도와 산도는 양의 상관관계가 있는 것으로 나타났다. 본 실험에서 토마토 생육, 과실 특성 및 수분이용효율을 토대로 얻은 결과는 I25가 토마토 펄라이트 수경재배에서 다른 처리 보다 적절한 급액량임을 보여준다.

Keywords

Acknowledgement

This research was supported by the Korea Smart Farm R&D Foundation of Korea (KoSFarm) (No. 421009-04), National Research Foundation of Korea (No. 2021R1F1A106428512), and the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (No. 2021R1F1A1064285).

References

  1. Alvarez S., A. Navarro, S. Banon, and M.J. Sanchez-Blanco 2009, Regulated deficit irrigation in potted dianthus plants: Effects of severe and moderate water stress on growth and physiological responses. Sci Hortic 122:579-585. doi:10.1016/j.scienta.2009.06.030
  2. An C., Y. Hwang, H. Yoon, H. Hwang, C. Rho, G. Song, and B. Jeong 2005, Effect of first irrigation time after sunrise on fruit quality and yield of sweet peppers (Capsicum annuum 'Jubilee' and 'Romeca') in rockwool culture. Hortic Sci Technol 23:146-152. (in Korean)
  3. Anthon G.E., and D.M. Barrett 2012, Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chem 132:915-920. doi:10.1016/j.foodchem.2011.11.066
  4. Arancon N.Q., J.D. Owens, and C. Converse 2019, The effects of vermicompost tea on the growth and yield of lettuce and tomato in a non-circulating hydroponics system. J Plant Nutr 42:2447-2458. doi:10.1080/01904167.2019.1655049
  5. Arancon N.Q., N. Schaffer, and C.E. Converse 2015, Effects of coconut husk and sphagnum moss-based media on growth and yield of romaine and buttercrunch lettuce (Lactuca sativa) in a non-circulating hydroponics system. J Plant Nutr 38:1218-1230. doi:10.1080/01904167.2014.983117
  6. Asaduzzaman M., Y. Kobayashi, M.F. Mondal, T. Ban, H. Matsubara, F. Adachi, and T. Asao 2013, Growing carrots hydroponically using perlite substrates. Sci Hortic 159: 113-121. doi:10.1016/j.scienta.2013.04.038
  7. Beckles D.M. 2012, Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 63:129-140. doi:10.1016/j.postharvbio.2011.05.016
  8. Bertin N., and M. Genard 2018, Tomato quality as influenced by preharvest factors. Sci Hortic 233:264-276. doi:10.1016/j.scienta.2018.01.056
  9. Boas A.C.V.A., D. Page, R. Giovinazzo, N. Bertin, A.L. Fanciullino 2017, Combined effects of irrigation regime, genotype, and harvest stage determine tomato fruit quality and aptitude for processing into puree. Front Plant Sci 8:1725. doi:10.3389/fpls.2017.01725
  10. Caretto S., A. Parente, F. Serio, and P. Santamaria 2008, Influence of potassium and genotype on vitamin e content and reducing sugar of tomato fruits. HortScience 43:2048-2051. doi:10.21273/HORTSCI.43.7.2048
  11. Choi E.Y., H.Y. Kim, K.Y. Choi, and Y.B. Lee 2016, Comparisons in volumes of irrigation and drainage, plant growth and fruit yield under FDR sensor-, integrated solar radiation-, and timer-automated irrigation systems for production of tomato in a coir substrate hydroponic system. Protected Hort Plant Fac 25:63-70. (in Korean) doi:10.12791/KSBEC.2016.25.1.63
  12. Choi G.L., K.H. Yeo, S.H. Choi, H.J. Jeong, N.J. Kang, and H.G. Choi 2017, Effect of EC level of irrigation solution on tomato growth and inorganic ions of root zone in soilless culture of tomato plant using coir substrate. Protected Hort Plant Fac 26:418-423. (in Korean) doi:10.12791/KSBEC.2017.26.4.418
  13. Choi G.L., K.H. Yeo, S.H. Choi, H.J. Jeong, S.Y. Kim, S.C. Lee, and N.J. Kang 2018, Effect of irrigation volume on ions content in root zone in soilless culture of tomato plant using coir substrate. Protected Hort Plant Fac 27:1-6. (in Korean) doi:10.12791/KSBEC.2018.27.1.1
  14. Danso E.O., S. Abenney-Mickson, E.B. Sabi, F. Plauborg, M. Abekoe, Y.O. Kugblenu, C.R. Jensen, and M.N. Andersen 2015, Effect of different fertilization and irrigation methods on nitrogen uptake, intercepted radiation and yield of okra (Abelmoschus esculentum L.) grown in the keta sand spit of southeast Ghana. Agric Water Manag 147:34-42. doi:10.1016/j.agwat.2014.07.029
  15. Gao Y., P. Tian, J. Li, Y. Cao, W. Xu, and J. Li 2019, Transcriptional changes during tomato ripening and influence of brackish water irrigation on fruit transcriptome and sugar content. Plant Physiol Biochem 145:21-33. doi:10.1016/j.plaphy.2019.10.025
  16. Grewal H.S., B. Maheshwari, and S.E. Parks 2011, Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: An Australian case study. Agric Water Manag 98:841-846. doi:10.1016/j.agwat.2010.12.010
  17. Huang T., F. Qi, X. Ji, Q. Peng, J. Yang, M. Wang, and Q. Peng 2022, Effect of different irrigation levels on quality parameters of 'Honeycrisp' apples. J Sci Food Agric 102:3316-3324. doi:10.1002/jsfa.11678
  18. Hwang Y.H., C.G. An, Y.H. Chang, H.S. Yoon, J.U. An, G.M. Shon, C.W. Rho, and B.R. Jeong 2012, Effect of zero drainage using drainage zero sensor on root zone environment, growth and yield in tomato rockwool culture. J Bio-Env Con 21:398-403. (in Korean) doi:10.12791/KSBEC.2012.21.4.398
  19. Imana C., J.N. Aguyoh, and A. Opiyo 2010, Growth and physiological changes of tomato as influenced by soil moisture levels. Second RUFORUM Biennial Meeting 20-24 September 2010, Entebbe, Uganda, 877-886.
  20. Jeong J.W., S.J. Hwang, and B.R. Jeong 2002, Effectiveness of acid injection as a method to remove HCO in hydroponic water. J Bio-Env Con 11:188-192. (in Korean)
  21. Kang N.J., M.W. Cho, J.K. Kweon, H.C. Rhee, and Y.H. Choi 2006, Effects of deficit irrigation on the total soluble solids and fruit yields of fresh tomato. J Bio-Env Con 15:335-339. (in Korean)
  22. Khattab M.M., A.E. Shaban, A.H. El-Shrief, and A.S.E. Mohamed 2012, Effect of humic acid and amino acids on pomegranate trees under deficit irrigation. I: Growth, flowering and fruiting. J Hortic Sci Ornam Plants 4:253-259. doi:10.5829/idosi.jhsop.2012.4.3.254
  23. Kim S.E., S.Y. Sim, S.D. Lee, and Y.S. Kim 2011, Appropriate each irrigation quantity in irrigation system controlled by drainage level sensor for perlite bag culture of tomato. Hortic Sci Technol 29:36-42. (in Korean)
  24. Kim S.J., S.M. Kim, and S.M. Kim 2013, A study on the vulnerability assessment for agricultural infrastructure using principal component analysis. J Korean Soc Agric Eng 55:31-38. (in Korean) doi:10.5389/KSAE.2013.55.1.031
  25. Klein A.M., S.D. Hendrix, Y. Clough, A. Scofield, and C. Kremen 2015, Interacting effects of pollination, water and nutrients on fruit tree performance. Plant Biol 17:201-208. doi:10.1111/plb.12180
  26. Kumar R.R., and J.Y. Cho 2014, Reuse of hydroponic waste solution. Environ Sci Pollut Res Int 21:9569-9577. doi:10.1007/s11356-014-3024-3
  27. Lee Y.B., H.J. Jeon, and J.I. Son 2010, Protected Horticulture. Hyangmunsa, Seoul, Korea, pp 215-247.
  28. Li X.R., H.N. Cao, K.C. Yoo, and I.S. Kim 2001, Effect of limited supplying frequency and amount of nutrient solutions on the yield and fruit quality of tomato grown in ash ball. Hortic Environ Biotechnol 42:501-505.
  29. Lim M.Y., S.H. Choi, H.J. Jeong, and G.L. Choi 2020, Characteristics of domestic net-type melon in hydroponic spring cultivars using coir substrates. Hortic Sci Technol 38:78-86. doi:10.7235/HORT.20200008
  30. MAFRA 2020, 2019 Vegetable greenhouse status and vegetable production performance. Ministry of Agriculture, Food and Rural Affairs (MAFRA), Horticultural Industries Division, Sejong, Korea.
  31. Majid M., J.N. Khan, Q.M.A. Shah, K.Z. Masoodi, B. Afroza, and S. Parvaze 2021, Evaluation of hydroponic systems for the cultivation of lettuce (Lactuca sativa L., var. longifolia) and comparison with protected soil-based cultivation. Agric Water Manag 245:106572. doi:10.1016/j.agwat.2020.106572
  32. Nangare D.D., Y. Singh, P.S. Kumar, and P.S. Minhas 2016, Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric Water Manag 171:73-79. doi:10.1016/j.agwat.2016.03.016
  33. Nisha P., R.S. Singhal, and A.B. Pandit 2011, Kinetic modelling of colour degradation in tomato puree (Lycopersicon esculentum L.). Food Bioproc Technol 4:781-787. doi:10.1007/s11947-009-0300-1
  34. Nuruddin M.M., C.A. Madramootoo, and G.T. Dodds 2003, Effects of water stress at different growth stages on greenhouse tomato yield and quality. HortScience 38:1389-1393. doi:10.21273/HORTSCI.38.7.1389
  35. Ortega-Reig M., C. Sanchis-Ibor, G. Palau-Salvador, M. Garcia-Molla, and L. Avella-Reus 2017, Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain. Agric Water Manag 187:164-172. doi:10.1016/j.agwat.2017.03.009
  36. Park Y.B., and Y.D. Kim 2002, Effect of adding seawater on the growth, yield and fruit quality of hydroponically grown tomato (Lycopersicon esculentum Mill.). J Bio-Env Con 11:181-187.
  37. Phukan U.J., S. Mishra, and R.K. Shukla 2016, Waterlogging and submergence stress: Affects and acclimation. Crit Rev Biotechnol 36:956-966. doi:10.3109/07388551.2015.1064856
  38. Quinet M., T. Angosto, F.J. Yuste-Lisbona, R. BlanchardGros, S. Bigot, J.P. Martinez, and S. Lutts 2019, Tomato fruit development and metabolism. Front Plant Sci 10:1554. doi:10.3389/fpls.2019.01554
  39. Rasheed R., M. Iqbal, M.A. Ashraf, I. Hussain, F. Shafiq, A. Yousaf, and A. Zaheer 2018, Glycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient comsposition, and fruit quality in tomato. J Hortic Sci Biotechnol 93: 385-391. doi:10.1080/14620316.2017.1373037
  40. Ren R., T. Liu, L. Ma, B. Fan, Q. Du, and J. Li 2021, Irrigation based on daily weighted evapotranspiration affects yield and quality of oriental melon. Sci Hortic 275:109714. doi:10.1016/j.scienta.2020.109714
  41. Ripoll J., L. Urban, B. Brunel, and N. Bertin 2016, Water deficit effects on tomato quality depend on fruit developmental stage and genotype. J Plant Physiol 190:26-35. doi:10.1016/j.jplph.2015.10.006
  42. Ripoll J., L. Urban, M. Staudt, F. Lopez-Lauri, L.P. Bidel, and N. Bertin 2014, Water shortage and quality of fleshy fruits-making the most of the unavoidable. J Exp Bot 65:4097-4117. doi:10.1093/jxb/eru197
  43. Rouphael Y., M. Cardarelli, E. Rea, A., Battistelli, and G. Colla 2006, Comparison of the subirrigation and drip-irrigation systems for greenhouse zucchini squash production using saline and non-saline nutrient solutions. Agric Water Manag 82:99-117. doi:10.1016/j.agwat.2005.07.018
  44. Sagor G.H.M., T. Berberich, S. Tanaka, M. Nishiyama, Y. Kanayama, S. Kojima, K. Muramoto, and T. Kusano 2016, A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol J 14:1116-1126. doi:10.1111/pbi.12480
  45. Scibisz I., M. Reich, S. Bureau, B. Gouble, M. Causse, D. Bertrand, and C.M. Renard 2011, Mid-infrared spectroscopy as a tool for rapid determination of internal quality parameters in tomato. Food Chem 125:1390-1397. doi: 10.1016/j.foodchem.2010.10.012
  46. Seidel S.J., S. Werisch, N. Schutze, and H. Laber 2017, Impact of irrigation on plant growth and development of white cabbage. Agric Water Manag 187:99-111. doi:10.1016/j.agwat.2017.03.011
  47. Seo T.C., and Y.C. Kim 2004, The production of truss-limited tomatoes grown by perlite culture. Korean Res Soc Protected Hort 17:37-44. (in Korean)
  48. Shi K., W.H. Hu, D.K. Dong, Y.H. Zhou, and J.Q. Yu 2007, Low O2 supply is involved in the poor growth in root-restricted plants of tomato (Lycopersicon esculentum Mill.). Environ Exp Bot 61:181-189. doi:10.1016/j.envexpbot.2007.05.010
  49. Silber A., B. Bar-Yosef, I. Levkovitch, and S. Soryano 2010, pH-dependent surface properties of perlite: Effects of plant growth. Geoderma 158:275-281. doi:10.1016/j.geoderma.2010.05.006
  50. Suarez L., P.J. Zarco-Tejada, V. Gonzalez-Dugo, J.A.J. Berni, R. Sagardoy, F. Morales, and E. Fereres 2010, Detecting water stress effects on fruit quality in orchards with timeseries PRI airborne imagery. Remote Sens Environ 114:286-298. doi:10.1016/j.rse.2009.09.006
  51. Subramanian K.S., P. Santhanakrishnan, and P. Balasubramanian 2006, Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245-253. doi:10.1016/j.scienta.2005.07.006
  52. Turhan A., N. Ozmen, M.S. Serbeci, and V. Seniz 2011, Effects of grafting on different rootstocks on tomato fruit yield and quality. Hortic Sci 38:142-149. doi:10.17221/51/2011-HORTSCI
  53. Van der Kooij S., M. Zwarteveen, H. Boesveld, and M. Kuper 2013, The efficiency of drip irrigation unpacked. Agric Water Manag 123:103-110. doi:10.1016/j.agwat.2013.03.014
  54. Van Iersel M.W., and K.S. Nemali 2004, Drought stress can produce small but not compact marigolds. HortScience 39:1298-1301. doi:10.21273/HORTSCI.39.6.1298
  55. Williams L.E. 2012, Interaction of applied water amounts and leaf removal in the fruiting zone on grapevine water relations and productivity of Merlot. Irrig Sci 30:363-375. doi:10.1007/s00271-012-0355-z
  56. Zhang X.M., W. Wang, L.Q. Du, J.H. Xie, Y.L. Yao, and G.M. Sun 2012, Expression patterns, activities and carbohydratemetabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development and ripening. Int J Mol Sci 13:9460-9477. doi:10.3390/ijms13089460
  57. Zhen J., N. Lazarovitch, and E. Tripler 2020, Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms. Agric Water Manag 241:106385. doi:10.1016/j.agwat.2020.106385.
  58. Zou X., Y. Li, R. Cremades, Q. Gao, Y. Wan, and X. Qin 2013, Cost-effectiveness analysis of water-saving irrigation technologies based on climate change response: A case study of China. Agric Water Manag 129:9-20. doi:10.1016/j.agwat.2013.07.004