DOI QR코드

DOI QR Code

Enhancement of Photosynthetic Characteristics and Antioxidant Enzyme Activities on Chili Pepper Plants by Salicylic Acid Foliar Application under High Temperature and Drought Stress Conditions

고온 및 건조 스트레스 조건 하에서 살리실산 경엽처리에 의한 고추의 광합성 특성 및 항산화효소 활성 증대

  • Lee, Jinhyoung (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Heeju (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Wi, Seunghwan (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Hyejin (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Choi, Haksoon (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Nam, Chunwoo (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Jang, Seonghoe (World Vegetable Center Korea Office (WKO))
  • 이진형 (농촌진흥청 국립원예특작과학원) ;
  • 이희주 (농촌진흥청 국립원예특작과학원) ;
  • 위승환 (농촌진흥청 국립원예특작과학원) ;
  • 이혜진 (농촌진흥청 국립원예특작과학원) ;
  • 최학순 (농촌진흥청 국립원예특작과학원) ;
  • 남춘우 (농촌진흥청 국립원예특작과학원) ;
  • 장성회 (세계채소센터 한국사무소)
  • Received : 2022.09.20
  • Accepted : 2022.10.07
  • Published : 2022.10.31

Abstract

Salicylic acid (SA), a phenolic compound, plays a pivotal role in regulating a wide range of physiological and metabolic processes in plants such as antioxidant cellular defense, photosynthesis, and biotic and abiotic stress responses during the growth and development. We examined the effect of exogenous SA application (100 mg·L-1) on the growth, yield, photosynthetic characteristics, lipid peroxidation, and antioxidant enzyme activity of chili pepper plants under high temperature and drought stress conditions. SA treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde and H2O2 were significantly lower in the third treatment of SA compared to the control. The activity of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase, increased in treated plants by up to 247, 318, 55 and 54%, respectively compared to the nontreated control. There was no significant difference in the growth characteristics between SA-treated and nontreated plants, while the SA treatment increased marketable yield (kg/10a) by about 15% compared to the nontreated control. Taken together, these results suggest that foliar application of SA alleviates physiological damages caused by the combination of drought and heat stress, and enhances the photosynthetic capacity and antioxidant enzyme activities, thereby improving tolerance to a combination of water deficit and heat stress in chili pepper plants.

살리실산은 식물의 생장 및 발달, 항산화 방어기작, 광합성 작용 그리고 생물적 및 비생물적 스트레스 조건에서 다양한 생리적 기능을 조절하는 물질로 알려져 있다. 본 연구에서는 고온·건조 스트레스 조건에서 살리실산 경엽처리가 고추의 생육, 광합성 특성 및 항산화효소 활성에 미치는 영향을 구명하고자 하였다. 광합성 특성 측정결과 광합성 속도, 기공전도도 및 증산 속도가 증가하였고, 3회차 처리에서 가장 높았다. 세포내 MDA와 H2O2 함량은 살리실산 3회차 처리에서 현저하게 감소하는 경향을 보였다. APX, CAT, POD 및 SOD 활성이 현저하게 증가하였으며, 무처리 대비 최대 247, 318, 55 및 54% 증가하였다. 고추의 생육 특성은 무처리구와 유의한 차이를 보이지 않았으나, 상품 수량은 15% 정도 증가하였다. 이러한 결과들을 종합해 볼 때, 살리실산의 경엽처리는 고추의 광합성 특성과 항산화효소 활성을 증진시켜 고온·건조 스트레스에 의한 피해 경감에 긍정적 효과를 유발함을 확인하였다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(과제번호: PJ01501903)의 지원에 의해 수행되었음.

References

  1. Abayomi Y.A., M.O. Aduloju, M.A. Egbewunmi, and B.O. Seleiman 2012, Effects of soil moisture contents and rates of NPK fertilizer application on growth and fruit yields of pepper (Capsicum spp.) genotypes. Int J Agric Sci 2:651-663.
  2. Aires E.S., A.K.L. Ferraz, B.L. Carvalho, F.P. Teixeira, F.F. Putti, E.P. Souza, J.D. Rodrigues, and E.O. Ono 2022, Foliar application of salicylic acid to mitigate water stress in tomato. Plants 22:1771. doi:10.3390/plants11131775
  3. Arfan M., H.R. Athar, and M. Ashraf 2007, Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?. J Plant Physiol 164:685-694. doi:10.1016/j.jplph.2006.05.010
  4. Bahram B. 2010, Induction of drought tolerance by salicylic acid in seedlings of cucumber (Cucumis sativus L.). J Hortic Sci Biotechnol 85:191-196. doi:10.1080/14620316.2010.11512653
  5. Bannister J.V., W.H. Bannister, and G. Rotilio 1987, Aspects of the structure, function, and applications of superoxide dismutase. Crit Rev Biochem Mol Biol 22:111-180. doi:10.3109/10409238709083738
  6. Baxter A., R. Mittler, and N. Suzuki 2014, ROS as key players in plant stress signalling. J Exp Bot 65:1229-1240. doi:10.1093/jxb/ert375
  7. Bradford M.M. 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. doi:10.1016/0003-2697(76)90527-3
  8. Chandrakar V., A. Dubey, and S. Keshavkant 2016, Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. J Soil Sci Plant Nutr 16:662-676. doi:10.4067/S0718-95162016005000048
  9. Chomkitichai W., A. Chumyam, P. Rachtanapun, J. Uthaibutra, and K. Saengnil 2014, Reduction of reactive oxygen species production and membrane damage during storage of 'Daw' longan fruit by chlorine dioxide. Sci Hortic 170:143-149. doi:10.1016/j.scienta.2014.02.036
  10. Demidchik V. 2015, Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212-228. doi:10.1016/j.envexpbot.2014.06.021
  11. Dhindsa R.S., P. Plumb-Dhindsa, and T.A. Thorpe 1981, Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93-101. doi:10.1093/jxb/32.1.93
  12. Dobon-Suarez A., M.J. Gimenez, M.E. Garcia-Pastor, and P.J. Zapata 2021, Salicylic acid foliar application increases crop yield and quality parameters of green pepper fruit during postharvest storage. Agronomy 11:2263. doi:10.3390/agronomy11112263
  13. El-Hady N.A.A.A., A.I. SlSayed, S.S. El-saadany, P.A. Deligios, and L. Ledda 2021, Exogenous application of foliar salicylic acid and propolis enhances antioxidant defenses and growth parameters in tomato plants. Plants 10:74. doi:10.3390/plants10010074
  14. Elwan M.W.M., and M.A.M. El-Hamahmy 2009, Improved productivity and quality associated with salicylic acid application in greenhouse pepper. Sci Hortic 122:521-526. doi:10.1016/j.scienta.2009.07.001
  15. Fayez K.A., and S.A. Bazaid 2014, Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13:45-55. doi:10.1016/j.jssas.2013.01.001
  16. Hwang J.M., and G.S. Tae 2001, Changes in the growth of red pepper (Capsicum annuum L.) and soil moisture according to irrigation and cultivating methods. Hortic Environ Biotechnol 42:295-299. (in Korean)
  17. Jahan M.S., W.G. Yu, S. Sheng, Z.G. Min, C.N. Zheng, W. Jianqiang, S.N. Jin, and S.G. Suna 2019, Exogenous salicylic acid increases the heat tolerance in tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Sci Hortic 247:421-429. doi:10.1016/j.scienta.2018.12.047
  18. Kang K.S., C.J. Lim, T.J. Han, J.C. Kim, and C.D. Jin 1998, Activation of ascorbate-glutathione cycle in Arabidopsis leaves in responses to aminotriazol. J Plant Biol 41:155-161. doi:10.1007/BF03030248
  19. Kawano T., and F. Bouteau 2013, Crosstalk between intracellular and extracellular salicylic acid signaling events leading to long-distance spread of signals. Plant Cell Rep 32:1125-1138. doi:10.1007/s00299-013-1451-0
  20. Kaya C. 2021, Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiol Plant 172:351-370. doi:doi:10.1111/ppl.13153
  21. Khanna P., K. Kaur, and A.K. Gupta 2016, Salicylic acid induces differential antioxidant response in spring maize under high temperature stress. Indian J Exp Biol 54:386-393.
  22. Khodary S. 2004, Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int J Agric Biol 6:5-8.
  23. KOSTAT (Statistics Korea) 2021, Crop production statistics. Availabe via http://www.kosis.kr. Accessed 30 November 2021
  24. Lee J.H., H.J. Lee, S.H. Wi, I.H. Yu, K.H. Yeo, S.W. An, Y.A. Jang, and S.H. Jang 2021, Enhancement of growth and antioxidant enzyme activities on Kimchi cabbage by melatonin foliar application under high temperature and drought stress conditions. Hortic Sci Technol 39:583-592. (in Korean) doi:10.7235/HORT.20210052
  25. Lee S.G., C.S. Choi, J.G. Lee, Y.A. Jang, H.J. Lee, W.B. Chae, and K.R. Do 2014, Influence of shading and irrigation on the growth and development of leaves tissue in hot pepper. Hortic Sci Technol 32:448-453. (in Korean) doi:10.7235/hort.2014.14015
  26. Lee S.G., H.J. Lee, S.K. Kim, B.H. Mun, J.H. Lee, H. S. Lee, and K.R. Do 2018, Influence of drought and high temperature on the physiological response and yield in hot pepper. J Environ Sci Int 27:251-259. (in Korean) doi:10.5322/JESI.2018.27.4.251
  27. Lee S.G., S.K. Kim, H.J. Lee, H.S. Lee, and J.H. Lee 2017, Impact of moderate and extreme climate change scenarios on growth, morphological features, photosynthesis, and fruit production of hot pepper. Ecol Evol 8:197-206. doi:10.1002/ece3.3647
  28. Lobato A.K.S., M.A.M. Barbosa, A.A. Alsahli, E.J.A. Lima, and B.R.S. Silva1 2021, Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. Physiol Plant 172:869-884. doi:10.1111/ppl.13329
  29. Manaa A., E. Gharbi, H. Mimouni, S. Wasti, S. Aschi-Smiti, S. Lutts, and H.B. Ahmed 2014, Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. S Afr J Bot 95:32-39. doi:10.1016/j.sajb.2014.07.015
  30. Mardani H., H. Bayat, A.H. Saeidnejad, and E.E. Rezaie 2012, Assessment of salicylic acid impacts on seedling characteristic of cucumber (Cucumis sativus L.) under water stress. Not Sci Biol 4:112-115. doi:10.15835/nsb.4.1.7258
  31. Mittler R., and E. Blumwald 2010, Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443-462. doi:10.1146/annurev-arplant-042809-112116
  32. Otalora G., M.C. Pinero, J.C. Collado-Gonzalez, J. Lopez-Marin, and F.M.D.A. Amor 2020, Exogenous salicylic acid modulates the response to combined salinity-temperature stress in pepper plants (Capsicum annuum L. var. Tamarin). Plants 9:1790. doi:10.3390/plants9121790
  33. Ou J.L., X.Z. Dai, Z.Q. Zhang, and X.X. Zou 2011, Responses of pepper to waterlogging stress. Photosynthetica 49:339-345. doi:10.1007/s11099-011-0043-x
  34. Pagamas P., and E. Nawata 2008, Sensitive stages of fruit and seed development of chili pepper (Capsicum annum L. var. Shishito) exposed to high-temperature stress. Sci Hortic 117:21-25. doi:10.1016/j.scienta.2008.03.017
  35. Parashar A., M. Yusuf, Q. Fariduddin, and A. Ahmad 2014, Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int J Biol Macromol 70:551-558. doi:10.1016/j.ijbiomac.2014.07.014
  36. Rajametov S.N., E.Y. Yang, M.C. Cho, S.Y. Chae, H.B. Jeong and W.B. Chae 2021, Heat?tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress condition. Sci Rep 11:14328. doi:10.1038/s41598-021-93697-5
  37. Rural Development Administration (RDA) 2016, The technique of pepper cultivation (Text of standard agriculture). RDA, Jeonju, Korea.
  38. Shao G.C., R.Q. Guo, N. Liu, S.E. Yu, and W.G. Xing 2011, Photosynthetic, chlorophyll fluorescence and growth changes in hot pepper under deficit irrigation and partial root zone drying. Afr J Agric Res 6:4671-4679. doi:10.5879/AJAR11.812
  39. Song E.Y., K.H. Moon, I.C. Son, C.H. Kim, C.K. Lim, D. Son, and S.J. Oh 2014, Impact of elevated temperature in growing season on growth and fruit quality of pepper (Capsicum annuum L.). Korean J Agric For Meteorol 16:349-358. (in Korean) doi:10.5532/KJAFM.2014.16.4.349
  40. Song E.Y., K.H. Moon, I.C. Son, S.H. Wi, C.H. Kim, C.K. Lim, and S.J. Oh 2016, Impact of elevated temperature and CO2 on growth and fruit quality of pepper (Capsicum annuum L.). Korean J Agric For Meteorol 18:179-187. (in Korean) doi:10.5532/KJAFM.2016.18.4.179
  41. Wang L., L. Fan, W. Loescher, W. Duan, G. Liu, J. Cheng, H. Luo, and S. Li 2010, Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34. doi:10.1186/1471-2229-10-34
  42. Widuri L.L., B. Lakitan, J. Sakagami, S. Yabuta, K. Kartika, and E. Siaga 2020, Short-term drought exposure decelerated growth and photosynthetic activities in chili pepper (Capsicum annuum L.). Ann Agric Sci 65:149-158. doi:10.1016/j.aoas.2020.09.002
  43. Xie Z., Y. Chu, W. Zhang, D. Lang, and X. Zhang 2019, Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environ Exp Bot 158:99-106. doi:10.1016/j.envexpbot.2018.11.021
  44. Zhang Z., M. Lan, X. Han, J.H. Wu, and W.P. Gefu 2020, Response of ornamental pepper to high-temperature stress and role of exogenous salicylic acid in mitigating high temperature. J Plant Growth Reg 39:133-146. doi:10.1007/s00344-019-09969-y
  45. Zhou R., X. Yu, C.O. Ottosen, E. Rosenqvist, L. Zhao, Y. Wang, W. Yu, T. Zhao, and Z. Wu 2017, Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol 17:24. doi:10. 1186/s12870-017-0974-x https://doi.org/10.1186/s12870-017-0974-x