• Title/Summary/Keyword: water use efficiency

Search Result 931, Processing Time 0.042 seconds

Characteristics of Irrigation on Yi-dong Agricultural Water District (이동 농업용수지구 관개특성)

  • 김진택;이용직
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2003.05a
    • /
    • pp.62-65
    • /
    • 2003
  • Improvement of the efficiency of the agricultural water use is important for the sustainable water management because the agricultural water use occupied above 60% of the total water use in korea. For the analysis of agricultural water use the Yi-dong experimental site was selected. For the monitoring system of the experimental site, four rainfall gauging stations and twenty-six water level gauging stations are established and operated. Analyses of the measured data are processed for the irrigation efficiency of agricultural water on the eight irrigation areas.

  • PDF

Water/nutrient use efficiency and effect of fertigation: a review

  • Woojin Kim;Yejin Lee;Taek-Keun Oh;Jwakyung Sung
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.919-926
    • /
    • 2022
  • Fertigation, which has been introduced in agricultural fields since 1990, has been widely practiced in upland fields as well as in plastic film houses as part of the crop production system. In accordance with demands in the agricultural sector, a huge number of scientific studies on fertigation have been conducted worldwide. Moreover, with a combination of advanced technologies such as big-data, machine learning, etc., fertigation is positioned as an indispensable tool to achieve sustainable crop production and to enhance nutrient and water use efficiency. In this review, we focused on providing valuable information in terms of crop production and nutrient/water use efficiency. A variety of fertigation studies have described that enhancement of crop production did not differ relative to conventional method or slightly increased. In contrast, fertigation significantly improved nutrient/water use efficiency, with a reduction in use ranging from 20 to 50%. Water-soluble organic resources such as livestock manure and agricultural byproducts also have been identified as useful resources like chemical fertilizers. Furthermore, the initial irrigation point was generally recommended in a range of -10 - -40 kPa, although the point differed according to the crop and crop growth stage. From this review, we suggest that fertigation, which is closely integrated with advanced technology, could be a leading technology to attain not only food security but also carbon neutrality via improvement of nutrient/water use efficiency.

Improving water use efficiency in the Upper Central Irrigation Area in Thailand via soil moisture system and local water user training

  • Koontankulvong, Sucharit;Visessri, Supatra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.8-12
    • /
    • 2022
  • Water loss is one of the typical but challenging problems in water management. To reduced water loss or increase water efficiency, the pilot projects were implemented in the TTD's irrigation area. Modern soil moisture technology and local level water user training were conducted together as a mean to achieve improved water efficiency. In terms of technology, soil moisture sensors and monitoring system were used to estimate crop water requirement to reduce unnecessary irrigation. This was found to save 16.47% of irrigated water and 25.20% of irrigation supply. Further improvement of water efficiency was gained by means of local level water user training in which stakeholders were engaged in the network of communications and co-planning. The lessons learnt from the TTD pilot project was translated into good water management practices at local level.

  • PDF

Characteristics of Irrigation and Analysis of Irrigation Efficiency (농업용수 공급특성 및 관개효율 분석(경기 평택 이동시험지구 중심))

  • Joo, Uk-Jong;Lee, Yong-Jik;Huh, Yoo-Man
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.255-258
    • /
    • 2003
  • Agricultural water use occupies 60% of the total water use in Korea, so variation of the farming pattern and the efficiency of agricultural water use is important for the sustainable water management. For the analysis of agricultural water use, the Yi-dong experimental site was selected. For the monitoring system of the experimental site, four rainfall gauging stations and twenty-six water level gauging stations are established and operated. Analyses of the measured data are processed for the irrigation efficiency of agricultural water and the effect of the variation of farming pattern.

  • PDF

An Analysis of the Technical Efficiency of Industrial Water Input in Manufacturing (공업용수의 기술적 효율성 분석)

  • Min, Dong-Ki
    • Journal of Environmental Policy
    • /
    • v.8 no.4
    • /
    • pp.37-49
    • /
    • 2009
  • While water management policies in Korea have focused on industrial water demand during the last decade, the amount of industrial water usage has decreased significantly. This paper estimates the technical efficiency of industrial water in order to test whether the reduction of industrial water usage is a result of improving the level of technical efficiency of industrial water. This paper shows that the technical efficiency of industrial water use slightly decreased from 0.5183 in 1998 to 0.4853 in 2003. In addition, these estimates are much less than those of other inputs and so, there is still much room for reducing the amount of industrial water use through improving technical efficiency even though the average productivity of industrial water has improved during this period.

  • PDF

Water Use Efficiency of Subsurface Drip Irrigation and Furrow Irrigation (지하점적관개와 고랑관개의 물 이용 효율)

  • Song, In-Hong;Waller Peter. M.;Choi, C. Yeon-Sik;Kwun, Soon-Kuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.3-13
    • /
    • 2007
  • The primary objective of this study was to compare water use efficiencies between subsurface drip irrigation and furrow irrigation. The uniformity of used drip lines was tested to determine if clogging would be a threat to the long-term success of a subsurface drip irrigation system. Three crops, cantaloupe, lettuce, and bell pepper, were grown in four plots for each irrigation system. Significantly less water was applied with subsurface drip irrigation than with furrow irrigation (29.5 % less for cantaloupe and 43.2 % less for bell poppet) in order to produce similar crop yields. Water use efficiencies with subsurface drip irrigation were significantly higher than those with furrow irrigation fur cantaloupe (P-value = 0.018) and bell pepper (P-value ${\leq}$ 0.001). Drip-irrigated lettuce, a shallow-rooted crop, had moderately higher water use efficiency during the first two seasons, while no difference was observed in the third season. After the experiment, the uniformity of the drip lines was 92.1 % on average and classified as good. The high values fur water use efficiency and uniformity indicate that subsurface drip irrigation can be a sustainable method for conserving irrigation water.

Application of OECD Agricultural Water Use Indicator in Korea (우리나라에 적합한 OECD 농업용수 사용지표의 설정)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.321-327
    • /
    • 2006
  • In Korea, there is a growing competitive for water resources between industrial, domestic and agricultural consumer, and the environment as many other OECD countries. The demand on water use is also affecting aquatic ecosystems particularly where withdrawals are in excess of minimum environmental needs for rivers, lakes and wetland habits. OECD developed three indicators related to water use by the agriculture in above contexts : the first is a water use intensity indicator, which is expressed as the quantity or share of agricultural water use in total national water utilization; the second is a water stress indicator, which is expressed as the proportion of rivers (in length) subject to diversion or regulation for irrigation without reserving a minimum of limiting reference flow; and the third is a water use efficiency indicator designated as the technical and the economic efficiency. These indicators have different meanings in the aspect of water resource conservation and sustainable water use. So, it will be more significant that the indicators should reflect the intrinsic meanings of them. The problem is that the aspect of an overall water flow in the agro-ecosystem and recycling of water use not considered in the assessment of agricultural water use needed for calculation of these water use indicators. Namely, regional or meteorological characteristics and site-specific farming practices were not considered in the calculation of these indicators. In this paper, we tried to calculate water use indicators suggested in OECD and to modify some other indicators considering our situation because water use pattern and water cycling in Korea where paddy rice farming is dominant in the monsoon region are quite different from those of semi-arid regions. In the calculation of water use intensity, we excluded the amount of water restored through the ground from the total agricultural water use because a large amount of water supplied to the farm was discharged into the stream or the ground water. The resultant water use intensity was 22.9% in 2001. As for water stress indicator, Korea has not defined nor monitored reference levels of minimum flow rate for rivers subject to diversion of water for irrigation. So, we calculated the water stress indicator in a different way from OECD method. The water stress indicator was calculated using data on the degree of water storage in agricultural water reservoirs because 87% of water for irrigation was taken from the agricultural water reservoirs. Water use technical efficiency was calculated as the reverse of the ratio of irrigation water to a standard water requirement of the paddy rice. The efficiency in 2001 was better than in 1990 and 1998. As for the economic efficiency for water use, we think that there are a lot of things to be taken into considerations to make a useful indicator to reflect socio-economic values of agricultural products resulted from the water use. Conclusively, site-specific, regional or meteorogical characteristics as in Korea were not considered in the calculation of water use indicators by methods suggested in OECD(Volume 3, 2001). So, it is needed to develop a new indicators for the indicators to be more widely applicable in the world.

Analysis of the Efficiency of Non-point Source Pollution Managements Considering the Land Use Characteristics of Watersheds (유역의 토지이용 특성을 고려한 비점오염원 관리방안 적용에 따른 저감 효율 분석)

  • Choi, Yujin;Lee, Seoro;Kum, Donghyuk;Han, Jeongho;Park, Woonji;Kim, Jonggun;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.405-422
    • /
    • 2020
  • Land use change by urbanization has significantly affected the hydrological process including the runoff characteristics. Due to this situation, it has been becoming more complicated to manage non-point source pollutions caused by rainfall. In order to effectively control non-point sources, it is necessary to identify the reduction efficiency of the various management method based on land use characteristics. Thus, the purpose of this study is to analyze the reduction efficiency of non-point source pollution management practices targeting three different watersheds with the different land use characteristics using the Soil and Water Assessment Tool (SWAT). To do this, the vulnerable subwatersheds to non-point source pollution occurrence within each watershed were selected based on the streamflow and water quality simulation results. Then, considering the land use, low impact development (LID) or best management practices (BMPs) were applied to the selected subwatersheds and the efficiency of each management was analyzed. As a result of analysis of the non-point source pollution reduction efficiency, when LID was applied to urban areas, the average reduction efficiencies of SS, NO3-N, and TP were 5.92%, 4.62%, and 10.35%, respectively. When BMPs were applied to rural areas, the average reduction efficiencies of SS, TN and TP were 35.45%, 4.37%, and 10.16%, respectively. The results of this study can be used as a reference for determining appropriate management methods for non-point source pollution in urban, rural, and complex watersheds.

Grain Yield and Water Use Efficiency as Affected by Irrigation at Different Growth Stages

  • Kim, Wook-Han;Hong, Byung-Hee;Ryu, Yong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.330-338
    • /
    • 1999
  • Extensive research has been conducted on effects of drought stress on growth and development of soybean but information is rather restricted on the limited-irrigation system by way of precaution against a long-term drought condition in the future. The experiment for limited-irrigation was conducted in transparent vinyl shelter at Asian Vegetable Research and Development Center (AVRDC), Taiwan in 1997. Two soybean varieties, Hwangkeum and AGS292, improved in Korea and AVRDC, respectively were used for this experiment. The relationships between normalized transpiration rate (NTR) and fraction of transpirable soil water (FTSW) in both varieties were similar that the NTR was unchanged until FTSW dropped to about 0.5 or 0.6. At FTSW less than those values, NTR declined rapidly. Days required to harvest in both varieties were significantly prolonged at IR6 treatment compared to any other treatments. Daily mean transpiration rate was significantly higher at IR5 treatment, as averaged over varieties. Similarly, water use efficiency was also high at 1R5 treatment. In both varieties, seed yield was the greatest at the IR5 treatment, as compared to any other limited-irrigation treatments, due to the increased seed number and high transpirational water use efficiency. The indices of input water and seed yield for the different limited-irrigation treatments against control indicated that Hwangkeum produced 59.6% or 60.7% of seed yield using 36.1% or 44.9% of input water, as compared to control, by irrigation at only R5 or R6 stages, respectively. The AGS292 produced 56.1% of seed yield with 35.4% of input water of control, when irrigated at R5 stage. The results of this study have elucidated that the limited irrigation at R5 stage in soybean can be minimized yield loss with such small quantity of water under the environment of long-term drought stress and the expected shortage of agricultural water in the future.

  • PDF

Development of Optimal Septic Tank in the Countries of Water Shortages (물 부족국가에서 활용가능한 정화조의 최적모형 개발)

  • Lim, Bong-Su;Jing, Hai-Long
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.418-427
    • /
    • 2015
  • This study was carried out to evaluate the performance of a lab-scale novel septic tank system for improving the conventional septic tank in the developing countries of water shortages. The lab-scale novel septic tank system consists of sepetic tank, aeration tank with HBC-ring, and sand filter. Optimum HRT was reguired about 1.5days to get a total COD removal efficiency of 90%, COD, BOD and SS removal efficiency was about 70%, 60%, and 85% in sepetic tank only. The structure of sepetic tank with two stages results in the high removal efficiency of organic matter. When sepetic tank, aeration tank, and sand filter were more than HRT 1.5days, 18hrs, and 12hrs, respectively, final effluent was less than 20 mg/L of BOD, 14 mg/L of SS, so that there is a high potential of its use for reusing water in flush toilet. There is no significant effect of HRT change on nutrient removal. Total nitrogen removal efficiency was about 40%, final effluent was 30~40 mg/L of TN, total phosphorus removal efficiency was about 11~25%, final effluent was 9~12 mg/L of TP. Because there is very small amounts of organic nitrogen and phosphorus in effluent, it was possible to reuse water for agricultural use.