DOI QR코드

DOI QR Code

Effect of caffeine on genes expressions of developing retinas in the chick model

  • Thanyarat Lekchaoum (Department of Anatomy, Faculty of Science, Mahidol University) ;
  • Aticha Buddawong (Chulabhorn International College of Medicine, Thammasat University) ;
  • Sunalin Ahi (Department of Anatomy, Faculty of Science, Mahidol University) ;
  • Nichapha Chandee (Department of Anatomy, Faculty of Science, Mahidol University) ;
  • Wattana Weerachatyanukul (Department of Anatomy, Faculty of Science, Mahidol University) ;
  • Somluk Asuvapongpatana (Department of Anatomy, Faculty of Science, Mahidol University)
  • 투고 : 2022.02.14
  • 심사 : 2022.04.17
  • 발행 : 2022.09.30

초록

It has been reported that overconsumption of caffeine during pregnancy leads to a deleterious effect within the nervous tissues during embryonic development. In this study, we further extrapolated the effect of caffeine in the developing retinas, which is known to be one of the most sensitive tissues in chick embryos. Morphological changes of retinal thickness and organization of neuroretinal epithelium were monitored using three gene markers, Atoh7, FoxN4, and Lim1. Upon treating with a single dose of caffeine (15 µmol at embryonic day 1 [E1]), relative thicknesses of developing retinas (particularly of E7 and E9) were significantly altered. Among the three genes studied, the expression pattern of Atoh7 was notably altered while those of FoxN4, and Lim1 mRNA showed only a slight change in these developing retinas. Quantitative polymerase chain reaction results supported the most notable changes of Atoh7 but not FoxN4, and Lim1 gene in the developing retinas, particularly at E7. The effect of caffeine towards other organs during development should be extrapolated and the awareness of its intensive consumption should be raised.

키워드

과제정보

This study was supported by a grant from the Development and Promotion of Science and Technology Talents Project (DPST), Thailand. We also thank the Center of Nanoimaging (CNI) and the Central Instrument Facility (CIF), Faculty of Science, Mahidol University, for providing instrumental support throughout this work.

참고문헌

  1. Reinhardt R, Centanin L, Tavhelidse T, Inoue D, Wittbrodt B, Concordet JP, Martinez-Morales JR, Wittbrodt J. Sox2, Tlx, Gli3, and Her9 converge on Rx2 to define retinal stem cells in vivo. EMBO J 2015;34:1572-88.
  2. Xiang M. Intrinsic control of mammalian retinogenesis. Cell Mol Life Sci 2013;70:2519-32.
  3. Ribeiro JA, Sebastiao AM. Caffeine and adenosine. J Alzheimers Dis 2010;20(Suppl 1):S3-15.
  4. Espinosa J, Rocha A, Nunes F, Costa MS, Schein V, Kazlauckas V, Kalinine E, Souza DO, Cunha RA, Porciuncula LO. Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia. J Alzheimers Dis 2013;34:509-18.
  5. Madeira MH, Elvas F, Boia R, Goncalves FQ, Cunha RA, Ambrosio AF, Santiago AR. Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure. J Neuroinflammation 2015;12:115.
  6. Rana N, Moond M, Marthi A, Bapatla S, Sarvepalli T, Chatti K, Challa AK. Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: an effective system for experiments in chemical biology. Zebrafish 2010;7:69-81.
  7. Hawkins JA, Hu N, Clark EB. Effect of caffeine on cardiovascular function in the stage 24 chick embryo. Dev Pharmacol Ther 1984;7:334-43.
  8. Ma ZL, Qin Y, Wang G, Li XD, He RR, Chuai M, Kurihara H, Yang X. Exploring the caffeine-induced teratogenicity on neurodevelopment using early chick embryo. PLoS One 2012;7:e34278.
  9. Park M, Choi Y, Choi H, Yim JY, Roh J. High doses of caffeine during the peripubertal period in the rat impair the growth and function of the testis. Int J Endocrinol 2015;2015:368475.
  10. Dorostghoal M, Erfani Majd N, Nooraei P. Maternal caffeine consumption has irreversible effects on reproductive parameters and fertility in male offspring rats. Clin Exp Reprod Med 2012;39:144-52.
  11. Brito R, Pereira-Figueiredo D, Socodato R, Paes-de-Carvalho R, Calaza KC. Caffeine exposure alters adenosine system and neurochemical markers during retinal development. J Neurochem 2016;138:557-70.
  12. Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci 2014;15:2024-52.
  13. de Carvalho RP, Braas KM, Adler R, Snyder SH. Developmental regulation of adenosine A1 receptors, uptake sites and endogenous adenosine in the chick retina. Brain Res Dev Brain Res 1992;70:87-95.
  14. Mustard JA. The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms. Cell Mol Life Sci 2014;71:1375-82.
  15. Lee Y, Moon SJ, Montell C. Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci U S A 2009;106:4495-500.
  16. Moon SJ, Kottgen M, Jiao Y, Xu H, Montell C. A taste receptor required for the caffeine response in vivo. Curr Biol 2006;16:1812-7.
  17. Nall AH, Shakhmantsir I, Cichewicz K, Birman S, Hirsh J, Sehgal A. Caffeine promotes wakefulness via dopamine signaling in Drosophila. Sci Rep 2016;6:20938.
  18. Soares HC, de Melo Reis RA, De Mello FG, Ventura AL, Kurtenbach E. Differential expression of D(1A) and D(1B) dopamine receptor mRNAs in the developing avian retina. J Neurochem 2000;75:1071-5.
  19. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res 2004;24:165-205.
  20. Ma ZL, Wang G, Cheng X, Chuai M, Kurihara H, Lee KK, Yang X. Excess caffeine exposure impairs eye development during chick embryogenesis. J Cell Mol Med 2014;18:1134-43.
  21. Brown NL, Patel S, Brzezinski J, Glaser T. Math5 is required for retinal ganglion cell and optic nerve formation. Development 2001;128:2497-508.
  22. Yang Z, Ding K, Pan L, Deng M, Gan L. Math5 determines the competence state of retinal ganglion cell progenitors. Dev Biol 2003;264:240-54.
  23. Le TT, Wroblewski E, Patel S, Riesenberg AN, Brown NL. Math5 is required for both early retinal neuron differentiation and cell cycle progression. Dev Biol 2006;295:764-78.
  24. Boije H, Edqvist PH, Hallbook F. Temporal and spatial expression of transcription factors FoxN4, Ptf1a, Prox1, Isl1 and Lim1 mRNA in the developing chick retina. Gene Expr Patterns 2008;8:117-23.
  25. Edqvist PH. Neuronal development in the embryonic retina: focus on the characterization, generation and development of horizontal cell subtypes [PhD dissertation]. Uppsala: Acta Universitatis Upsaliensis; 2006.
  26. Gouge A, Holt J, Hardy AP, Sowden JC, Smith HK. Foxn4--a new member of the forkhead gene family is expressed in the retina. Mech Dev 2001;107:203-6.
  27. Li S, Mo Z, Yang X, Price SM, Shen MM, Xiang M. Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron 2004;43:795-807.
  28. Dyer MA, Livesey FJ, Cepko CL, Oliver G. Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet 2003;34:53-8.
  29. Marillat V, Sabatier C, Failli V, Matsunaga E, Sotelo C, Tessier-Lavigne M, Chedotal A. The slit receptor Rig-1/Robo3 controls midline crossing by hindbrain precerebellar neurons and axons. Neuron 2004;43:69-79.
  30. Klebanoff MA, Levine RJ, Clemens JD, Wilkins DG. Maternal serum caffeine metabolites and small-for-gestational age birth. Am J Epidemiol 2002;155:32-7.
  31. Bracken MB, Triche EW, Belanger K, Hellenbrand K, Leaderer BP. Association of maternal caffeine consumption with decrements in fetal growth. Am J Epidemiol 2003;157:456-66.
  32. Bakker R, Steegers EA, Obradov A, Raat H, Hofman A, Jaddoe VW. Maternal caffeine intake from coffee and tea, fetal growth, and the risks of adverse birth outcomes: the generation R study. Am J Clin Nutr 2010;91:1691-8.
  33. Momoi N, Tinney JP, Liu LJ, Elshershari H, Hoffmann PJ, Ralphe JC, Keller BB, Tobita K. Modest maternal caffeine exposure affects developing embryonic cardiovascular function and growth. Am J Physiol Heart Circ Physiol 2008;294:H2248-56.
  34. Blazynski C, Perez MT. Adenosine in vertebrate retina: localization, receptor characterization, and function. Cell Mol Neurobiol 1991;11:463-84.
  35. Braas KM, Zarbin MA, Snyder SH. Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina. Proc Natl Acad Sci U S A 1987;84:3906-10.
  36. Kvanta A, Seregard S, Sejersen S, Kull B, Fredholm BB. Localization of adenosine receptor messenger RNAs in the rat eye. Exp Eye Res 1997;65:595-602.
  37. Nguyen-Ba-Charvet KT, Rebsam A. Neurogenesis and specification of retinal ganglion cells. Int J Mol Sci 2020;21:451.