DOI QR코드

DOI QR Code

다른 크기의 분말 적층을 통해 얻은 Fe-6%Mn합금의 경사 미세조직과 기계적 특성

Gradient Microstructure and Mechanical Properties of Fe-6%Mn Alloy by Different Sized Powder Stacking

  • 서남혁 (전북대학교 신소재공학부) ;
  • 이준호 (전북대학교 신소재공학부) ;
  • 신우철 (전북대학교 신소재공학부) ;
  • 전준협 (전북대학교 신소재공학부) ;
  • 박정빈 (전북대학교 신소재공학부) ;
  • 손승배 (전북대학교 신소재공학부) ;
  • 정재길 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부)
  • Seo, Namhyuk (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Junho (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Shin, Woocheol (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Jeon, Junhyub (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Park, Jungbin (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Son, Seung Bae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Jung, Jae-Gil (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
  • 투고 : 2022.10.04
  • 심사 : 2022.10.20
  • 발행 : 2022.10.28

초록

A typical trade-off relationship exists between strength and elongation in face-centered cubic metals. Studies have recently been conducted to enhance strength without ductility reduction through surface-treatment-based ultrasonic nanocrystalline surface modification (UNSM), which creates a gradient microstructure in which grains become smaller from the inside to the surface. The transformation-induced plasticity effect in Fe-Mn alloys results in excellent strength and ductility due to their high work-hardening rate. This rate is achieved through strain-induced martensitic transformation when an alloy is plastically deformed. In this study, Fe-6%Mn powders with different sizes were prepared by high-energy ball milling and sintered through spark plasma sintering to produce Fe-6%Mn samples. A gradient microstructure was obtained by stacking the different-sized powders to achieve similar effects as those derived from UNSM. A compressive test was performed to investigate the mechanical properties, including the yielding behavior. The deformed microstructure was observed through electron backscatter diffraction to determine the effects of gradient plastic deformation.

키워드

과제정보

This work was supported by a Korea Institute for Advancement of Technology grant, funded by the Korea Government (MOTIE) (P0002019), as part of the Competency Development Program for Industry Specialists.

참고문헌

  1. W. Shi, L. Lin, C. X. Yang, R. Y. Fu, L. Wang and P. Wollants: Mater. Sci. Eng. A, 429 (2006) 247. https://doi.org/10.1016/j.msea.2006.05.069
  2. S. J. Lee, S. Lee and B. C. De Cooman: Scr. Mater., 64 (2011) 649. https://doi.org/10.1016/j.scriptamat.2010.12.012
  3. B. C. De Cooman: Curr. Opin. Solid State Mater. Sci., 8 (2004) 285. https://doi.org/10.1016/j.cossms.2004.10.002
  4. S. C. Baik, S. Kim, Y. S. Jin and O. Kwon: ISIJ Int., 41 (2001) 290. https://doi.org/10.2355/isijinternational.41.290
  5. Y. Kang and S. J. Lee: Appl. Mech. Mater., 876 (2017) 41.
  6. K. Kim and S. J. Lee: Mater. Sci. Eng. A, 698 (2017) 183. https://doi.org/10.1016/j.msea.2017.05.030
  7. D. Park, S. J. Oh, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 53 (2018) 1477.
  8. S. J. Lee and Y. K. Lee: Mater . Sci. For um, 475-479 (2005) 3169.
  9. S. J. Lee, S. Lee and B. C. De Cooman: Int. J. Mater. Res., 104 (2013) 423. https://doi.org/10.3139/146.110882
  10. S. J. Lee and K. S. Park: Metall. Mater. Trans. A, 44A (2013) 3423.
  11. S. J. Oh, J. Jeon, I. J. Shon and S. J. Lee: J. Powder Mater., 26 (2019) 389. https://doi.org/10.4150/KPMI.2019.26.5.389
  12. J. Mahieu, J. Maki, B. C. De Cooman and S. Claessens: Metall. Mater. Trans. A, 33A (2002) 2573.
  13. C. Suryanarayana: Porg. Mater. Sci., 46 (2001) 1.
  14. E. Baczek, J. Konstanty, A. Romanski, M. Podsiadlo and J. Cyboron: J. Mater. Eng. Perform., 27 (2018) 1475. https://doi.org/10.1007/s11665-018-3181-5
  15. F. Deirmina and M. Pellizzari: Mater. Sci. Eng. A, 743 (2019) 349.
  16. J. Park, J. Jeon, N. Seo, G. Kim, S. B. Son and S. J. Lee: J. Powder Mater., 4 (2021) 336.
  17. G. Kim, J. Jeon, N. Seo, J. Park, S. B. Son and S. J. Lee: J. Powder Mater., 3 (2021) 246.
  18. B. Song, H. Pan, L. Chai, N. Guo, H. Zhao and R. Xin: Mater. Sci. Eng. A, 689 (2017) 78.
  19. J. Zhang, Y. Xu, D. Han and Z. Tong: Scr. Mater., 218 (2022) 114790. https://doi.org/10.1016/j.scriptamat.2022.114790
  20. J. W. Bae, P. Asghari-Rad, A. Amanov and H. S. Kim: Mater. Sci. Eng. A, 826 (2021) 141966.
  21. S. J. Oh, D. Park, K. Kim, I. J. Shon and S. J. Lee: Mater. Sci. Eng. A, 725 (2018) 382. https://doi.org/10.1016/j.msea.2018.04.051
  22. B. Averbach and M. Cohen: Trans. AIME, 176 (1948) 60.
  23. S. Choi, N. Seo, J. Jun, S. B. Son and S. J. Lee: J. Powder Mater., 27 (2020) 414. https://doi.org/10.4150/KPMI.2020.27.5.414
  24. X. Y. Wang, J. T. Jiang, G. A. Li, X. M. Wang, W. Z. Shao and L. Zhen: J. Mater. Res. Technol., 10 (2020) 643.
  25. G. Adam, R. Krzysztof and K. Hanna: Solid State Phenom., 203-204 (2013) 34.
  26. M. Azuma, S. Goutianos, N. Hansen, G. Winther and X. Huang: Mater. Sci. Technol., 28 (2012) 9.