DOI QR코드

DOI QR Code

이황화텅스텐 나노시트 제조를 위한 기계화학적 볼밀링 공정 연구

A Study on Mechano-chemical Ball Milling Process for Fabricating Tungsten Disulfide Nanosheets

  • 김슬기 (충북대학교 도시.에너지.환경 융합학부) ;
  • 안윤희 (충북대학교 도시.에너지.환경 융합학부) ;
  • 이동주 (충북대학교 도시.에너지.환경 융합학부)
  • Kim, Seulgi (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University) ;
  • Ahn, Yunhee (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University) ;
  • Lee, Dongju (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University)
  • 투고 : 2022.09.27
  • 심사 : 2022.10.25
  • 발행 : 2022.10.28

초록

Tungsten disulfide (WS2) nanosheets have attracted considerable attention because of their unique optical and electrical properties. Several methods for fabrication of WS2 nanosheets have been developed. However, methods for mass production of high-quality WS2 nanosheets remain challenging. In this study, WS2 nanosheets were fabricated using mechano-chemical ball milling based on the synergetic effects of chemical intercalation and mechanical exfoliation. The ball-milling time was set as a variable for the optimized fabricating process of WS2 nanosheets. Under the optimized conditions, the WS2 nanosheets had lateral sizes of 500-600 nm with either a monolayer or bilayer. They also exhibited high crystallinity in the 2H semiconducting phase. Thus, the proposed method can be applied to the exfoliation of other transition metal dichalcogenides using suitable chemical intercalants. It can also be used with high-performance WS2-based photodiodes and transistors used in practical semiconductor applications.

키워드

과제정보

본 연구는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단(No.2021R1F1A1058854), 한국산업기술평가관리원의 지원(20011520, 스크랩을 활용 한 정밀가공용 100 nm급 텅스텐계 소재 및 공구제조기술 개발) 및 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(2021 7510100020, 저품위 공정 폐액으로부터 희소금속 회수 공통 핵심(농축, 분리 회수) 공정 플랫폼 구축 및 소재화 기술 개발).

참고문헌

  1. K.-A. N. Duerloo, Y. Li and E. J. Reed: Nat. Commun., 5 (2014) 4214. https://doi.org/10.1038/ncomms5214
  2. S. Kim, W. Park, D. Kim, J. Kang, J. Lee, H. Y. Jang, S. H. Song, B. Cho and D. Lee: Nanomaterials, 10 (2020) 1045. https://doi.org/10.3390/nano10061045
  3. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh and H. Zhang: Nature Chemistry, 5 (2013) 263. https://doi.org/10.1038/nchem.1589
  4. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano: Nat. Nanotechnol., 7 (2012) 699. https://doi.org/10.1038/nnano.2012.193
  5. X. Huang, Z. Zeng and H. Zhang: Chemical Society Reviews, 42 (2013) 1934. https://doi.org/10.1021/ja311385y
  6. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl and J. E. Goldberger: ACS Nano, 7 (2013) 2898. https://doi.org/10.1021/nn400280c
  7. S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko and A. F. Morpurgo: Nano Lett., 14 (2014) 2019. https://doi.org/10.1021/nl500171v
  8. M. Bernardi, M. Palummo and J. C. Grossman: Nano Lett., 13 (2013) 3664. https://doi.org/10.1021/nl401544y
  9. S. Ratha and C. S. Rout: ACS Appl. Mater. Interfaces, 5 (2013) 11427. https://doi.org/10.1021/am403663f
  10. L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li and H. Dai: Angew. Chem. Int. Ed., 53 (2014) 7860. https://doi.org/10.1002/anie.201402315
  11. R. Bhandavat, L. David and G. Singh: J. Phys. Chem., 3 (2012) 1523.
  12. R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubsky and M. Pumera: Chem. Commun., 53 (2017) 3054. https://doi.org/10.1039/C6CC09952A
  13. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan and G. Eda: ACS Nano, 7 (2013) 791. https://doi.org/10.1021/nn305275h
  14. A. Jawaid, D. Nepal, K. Park, M. Jespersen, A. Qualley, P. Mirau, L. F. Drummy and R. A. Vaia: Chem. Mater., 28 (2016) 337. https://doi.org/10.1021/acs.chemmater.5b04224
  15. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla: Nature Materials, 12 (2013) 850. https://doi.org/10.1038/nmat3700
  16. Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li and T.-W. Lin: Adv. Mater., 24 (2012) 2320. https://doi.org/10.1002/adma.201104798
  17. C. Han, Y. Zhang, P. Gao, S. Chen, X. Liu, Y. Mi, J. Zhang, Y. Ma, W. Jiang and J. Chang: Nano Lett., 17 (2017) 7767. https://doi.org/10.1021/acs.nanolett.7b03968
  18. L. H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic and A. M. Glushenkov: J. Chem., 21 (2011) 11862.
  19. S. Lu, W. Luo, Z.-S. Chao, Y. Liu, S. Han and J. Fan: J. Mater. Sci., 57 (2022).
  20. H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao and X. Cui: Sci. Rep., 3 (2013) 1608. https://doi.org/10.1038/srep01608
  21. K. H. Shin, M.-K. Seo, S. Pak, A.-R. Jang and J. I. Sohn: Nanomaterials, 12 (2022) 1393. https://doi.org/10.3390/nano12091393